People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Rajeev
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Electrochemical Sensing of Hydrogen Peroxide Using Composite Bismuth Oxide/Bismuth Oxyselenide Nanostructures: Antagonistic Influence of Tungsten Dopingcitations
- 2024Influence of an Engineered Notch on the Electromagnetic Radiation Performance of NiTi Shape Memory Alloy
- 2023Fuzzy logic based active vibration control using novel photostrictive compositescitations
- 2022Carbon Nanostructures-based Polymer Nanocomposites for EMI Shielding Applications
- 2022Tuning the Properties of Nanocomposites by Trapping Them in Deep Metastable Statescitations
- 2020Addition of Short Polymer Chains Mechanically Reinforces Glassy Poly(2-vinylpyridine)-Silica Nanoparticle Nanocompositescitations
- 2020Addition of Short Polymer Chains Mechanically Reinforces Glassy Poly(2-vinylpyridine)–Silica Nanoparticle Nanocompositescitations
- 2018On the Morphological Behavior of ABC Miktoarm Stars Containing Poly(cis 1,4-isoprene), Poly(styrene), and Poly(2-vinylpyridine)citations
Places of action
Organizations | Location | People |
---|
article
Addition of Short Polymer Chains Mechanically Reinforces Glassy Poly(2-vinylpyridine)–Silica Nanoparticle Nanocomposites
Abstract
The addition of hard fillers to a polymer matrix is a well-known process for achieving mechanical reinforcement. With a decrease in the size of the fillers, the contribution from polymer- particle nanometer-sized interfaces becomes significant, and these interfaces affect the mechanical performance of polymer nanocomposites (PNCs) beyond the limits established for conventional composites. However, the molecular mechanisms underlying the improvement in the mechanical performance of glassy PNCs remain unresolved, necessitating a deeper understanding of the structure-property relationships in these intrinsically heterogeneous systems. In this effort, by using Brillouin light scattering (BLS) and dynamic mechanical analysis (DMA), we demonstrated that adding shorter chains to a PNC prepared with high molecular weight polymers significantly improved the mechanical properties of the PNC in the glassy state. The strongest enhancement of mechanical properties occurred at an optimum concentration of short chains. This is in contrast to the behavior of the glass transition temperature of PNCs which shows a monotonic decrease with an increase in the concentration of shorter chains. Using experimental data and coarse-grained molecular dynamics (MD) simulations, we have identified the molecular mechanism leading to the observed nonmonotonic changes in mechanical reinforcement. This mechanism includes changes in the nanoscale organization at the interface combined with chain stretching amplified by the addition of the short chains. Overall, our approach paves a simple and cost-effective pathway to fabricating glassy PNCs with significantly improved mechanical properties that will fill various practical needs.