Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aseyev, Vladimir O.

  • Google
  • 12
  • 43
  • 313

University of Helsinki

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersionscitations
  • 2023Amphoteric nano- and microgels with acrylamide backbone for potential application in oil recovery3citations
  • 2023Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersionscitations
  • 2022Well-dispersed clay in photopolymerized poly(ionic liquid) matrix4citations
  • 2022Ophthalmic drug delivery system based on the complex of gellan and ofloxacin5citations
  • 2021Synthesis and characterization of novel thermo- and salt-sensitive amphoteric terpolymers based on acrylamide derivatives3citations
  • 2020Think Beyond the Core74citations
  • 2016AuNP-Polymeric Ionic Liquid Composite Multicatalytic Nanoreactors for One-Pot Cascade Reactions32citations
  • 2016Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycations7citations
  • 2011Polyelectrolyte Brushes Grafted from Cellulose Nanocrystals Using Cu-Mediated Surface-Initiated Controlled Radical Polymerization.157citations
  • 2009Sorption of silicic acid from non-saturated aqueous solution by a complex of zinc ions with poly(vinylamine)11citations
  • 2004Complexation of DNA with Poly(methacryl oxyethyl trimethylammonium chloride) and Its Poly(oxyethylene) Grafted Analogue.17citations

Places of action

Chart of shared publication
Karjalainen, Erno
4 / 12 shared
Tenhu, Heikki
6 / 35 shared
Salminen, Linda
3 / 5 shared
Kudaibergenov, Sarkyt
1 / 2 shared
Yermaganbetov, Mubarak
1 / 1 shared
Gussenov, Iskander
1 / 1 shared
Shakhvorostov, Alexey
1 / 1 shared
Ayazbayeva, Aigerim
1 / 1 shared
Baddam, Vikram
1 / 1 shared
Tatykhanova, Gulnur S.
1 / 1 shared
Vamvakaki, Maria
1 / 4 shared
Khutoryanskiy, Vitaliy V.
1 / 16 shared
Kudaibergenov, Sarkyt E.
1 / 1 shared
Seilkhanov, T. M.
1 / 3 shared
Kudaibergenov, S. E.
1 / 3 shared
Ayazbayeva, A. Ye.
1 / 2 shared
Shakhvorostov, A. V.
1 / 2 shared
Haider, Malik Salman
1 / 3 shared
Flegler, Vanessa J.
1 / 2 shared
Luxenhofer, Robert
1 / 23 shared
Endres, Sebastian
1 / 3 shared
Boettcher, Bettina
1 / 3 shared
Forster, Stefan
1 / 3 shared
Pöppler, Ann-Christin
1 / 2 shared
Luebtow, Michael M.
1 / 4 shared
Vicent, Cristian
1 / 1 shared
Alfonso, Ignacio
1 / 2 shared
Garcia-Verdugo, Eduardo
1 / 3 shared
Luis, Santiago V.
1 / 4 shared
Montolio, Silvia
1 / 1 shared
Burguete, M. Isabel
1 / 2 shared
Overton, Philip
1 / 3 shared
Karesoja, Mikko
2 / 8 shared
Annenkov, Vadim
2 / 4 shared
Danilovtseva, Elena
2 / 4 shared
Mckee, Jason R.
1 / 3 shared
Majoinen, Johanna
1 / 7 shared
Walther, Andreas
1 / 24 shared
Kontturi, Eero
1 / 28 shared
Ikkala, Olli.
1 / 1 shared
Malho, Jani Markus
1 / 1 shared
Ruokolainen, Janne
1 / 23 shared
Andersson, Toni
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2016
2011
2009
2004

Co-Authors (by relevance)

  • Karjalainen, Erno
  • Tenhu, Heikki
  • Salminen, Linda
  • Kudaibergenov, Sarkyt
  • Yermaganbetov, Mubarak
  • Gussenov, Iskander
  • Shakhvorostov, Alexey
  • Ayazbayeva, Aigerim
  • Baddam, Vikram
  • Tatykhanova, Gulnur S.
  • Vamvakaki, Maria
  • Khutoryanskiy, Vitaliy V.
  • Kudaibergenov, Sarkyt E.
  • Seilkhanov, T. M.
  • Kudaibergenov, S. E.
  • Ayazbayeva, A. Ye.
  • Shakhvorostov, A. V.
  • Haider, Malik Salman
  • Flegler, Vanessa J.
  • Luxenhofer, Robert
  • Endres, Sebastian
  • Boettcher, Bettina
  • Forster, Stefan
  • Pöppler, Ann-Christin
  • Luebtow, Michael M.
  • Vicent, Cristian
  • Alfonso, Ignacio
  • Garcia-Verdugo, Eduardo
  • Luis, Santiago V.
  • Montolio, Silvia
  • Burguete, M. Isabel
  • Overton, Philip
  • Karesoja, Mikko
  • Annenkov, Vadim
  • Danilovtseva, Elena
  • Mckee, Jason R.
  • Majoinen, Johanna
  • Walther, Andreas
  • Kontturi, Eero
  • Ikkala, Olli.
  • Malho, Jani Markus
  • Ruokolainen, Janne
  • Andersson, Toni
OrganizationsLocationPeople

article

Think Beyond the Core

  • Haider, Malik Salman
  • Flegler, Vanessa J.
  • Luxenhofer, Robert
  • Endres, Sebastian
  • Boettcher, Bettina
  • Aseyev, Vladimir O.
  • Forster, Stefan
  • Pöppler, Ann-Christin
  • Luebtow, Michael M.
Abstract

<p>Polymeric micelles are typically characterized as core-shell structures. The hydrophobic core is considered as a depot for hydrophobic molecules, and the corona-forming block acts as a stabilizing and solubilizing interface between the core and aqueous milieu. Tremendous efforts have been made to tune the hydrophobic block to increase the drug loading and stability of micelles, whereas the role of hydrophilic blocks is rarely investigated in this context, with poly(ethylene glycol) (PEG) being the gold standard of hydrophilic polymers. To better understand the role of the hydrophilic corona, a small library of structurally similar A-B-A-type amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s is investigated by varying the hydrophilic block A utilizing poly(2-methyl-2-oxazoline) (pMeOx; A) or poly(2-ethyl-2-oxazoline) (pEtOx; A*). In terms of hydrophilicity, both polymers closely resemble PEG. The more hydrophobic block B bears either a poly(2-oxazoline) and poly(2-oxazine) backbone with C3 (propyl) and C4 (butyl) side chains. Surprisingly, major differences in loading capacities from A-B-A &gt; A*-B-A &gt; A*-B-A* is observed for the formulation with two poorly water-soluble compounds, curcumin and paclitaxel, highlighting the importance of the hydrophilic corona of polymer micelles used for drug formulation. The formulations are also characterized by various nuclear magnetic resonance spectroscopy methods, dynamic light scattering, cryogenic transmission electron microscopy, and (micro) differential scanning calorimetry. Our findings suggest that the interaction between the hydrophilic block and the guest molecule should be considered an important, but previously largely ignored, factor for the rational design of polymeric micelles.</p>

Topics
  • impedance spectroscopy
  • compound
  • polymer
  • gold
  • transmission electron microscopy
  • differential scanning calorimetry
  • forming
  • Nuclear Magnetic Resonance spectroscopy
  • dynamic light scattering