People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Branquinho, Rita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductorscitations
- 2022Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductorscitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2020Application of ultrasonic sprayed zirconium oxide dielectric in zinc tin oxide-based thin film transistorcitations
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 2020Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applicationscitations
- 2020Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applicationscitations
- 2020Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructurationcitations
- 2019Tailoring IGZO composition for enhanced fully solution-based thin film transistorscitations
- 2018Boosting highly transparent and conducting indium zinc oxide thin films through solution combustion synthesis: Influence of rapid thermal annealingcitations
- 2016UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistorscitations
- 2016FUV-assisted low temperature AlOx solution based dielectric for oxide TFTs
- 2015Gravure printed sol-gel derived AlOOH hybrid nanocomposite thin films for printed electronicscitations
- 2015Gravure printed sol-gel derived AlOOH hybrid nanocomposite thin films for printed electronicscitations
- 2015Morphological and optical characterization of transparent thin films obtained at low temperature using ZnO nanoparticles
- 2015A combination of solution synthesis solution combustion synthesis for highly conducting and transparent Aluminum Zinc Oxide thin filmscitations
- 2014Aqueous Combustion Synthesis of Aluminum Oxide Thin Films and Application as Gate Dielectric in GZTO Solution-based TFTscitations
- 2013Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytescitations
- 2008Adsorption and catalytic properties of SiO2/Bi2S3 nanocomposites on the methylene blue photodecolorization processcitations
Places of action
Organizations | Location | People |
---|
article
Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructuration
Abstract
<p>The current trend for smart, self-sustainable, and multifunctional technology demands for the development of energy harvesters based on widely available and environmentally friendly materials. In this context, ZnSnO3 nanostructures show promising potential because of their high polarization, which can be explored in piezoelectric devices. Nevertheless, a pure phase of ZnSnO3 is hard to achieve because of its metastability, and obtaining it in the form of nanowires is even more challenging. Although some groups have already reported the mixing of ZnSnO3 nanostructures with polydimethylsiloxane (PDMS) to produce a nanogenerator, the resultant polymeric film is usually flat and does not take advantage of an enhanced piezoelectric contribution achieved through its microstructuration. Herein, a microstructured composite of nanowires synthesized by a seed-layer free hydrothermal route mixed with PDMS (ZnSnO3@PDMS) is proposed to produce nanogenerators. PFM measurements show a clear enhancement of d33 for single ZnSnO3 versus ZnO nanowires (23 ± 4 pm/V vs 9 ± 2 pm/V). The microstructuration introduced herein results in an enhancement of the piezoelectric effect of the ZnSnO3 nanowires, enabling nanogenerators with an output voltage, current, and instantaneous power density of 120 V, 13 μA, and 230 μW·cm-2, respectively. Even using an active area smaller than 1 cm2, the performance of this nanogenerator enables lighting up multiple LEDs and other small electronic devices, thus proving great potential for wearables and portable electronics.</p>