People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hirvonen, Jouni Tapio
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applicationscitations
- 2020Multifunctional 3D-printed patches for long-term drug release therapies after myocardial infarctioncitations
- 2018Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regenerationcitations
- 2017Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitationcitations
- 2017Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabricationcitations
- 2016Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal modelcitations
- 2015Microfluidic Nanoprecipitation of a Stimuli Responsive Hybrid Nanocomposite for Antitumoral Applications
Places of action
Organizations | Location | People |
---|
article
Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applications
Abstract
<p>Heart tissue engineering is critical in the treatment of myocardial infarction, which may benefit from drug-releasing smart materials. In this study, we load a small molecule (3i-1000) in new biodegradable and conductive patches for application in infarcted myocardium. The composite patches consist of a biocompatible elastomer, poly(glycerol sebacate) (PGS), coupled with collagen type I, used to promote cell attachment. In addition, polypyrrole is incorporated because of its electrical conductivity and to induce cell signaling. Results from the in vitro experiments indicate a high density of cardiac myoblast cells attached on the patches, which stay viable for at least 1 month. The degradation of the patches does not show any cytotoxic effect, while 3i-1000 delivery induces cell proliferation. Conductive patches show high blood wettability and drug release, correlating with the rate of degradation of the PGS matrix. Together with the electrical conductivity and elongation characteristics, the developed biomaterial fits the mechanical, conductive, and biological demands required for cardiac treatment.</p>