Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sanchez, Joel

  • Google
  • 1
  • 6
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020A Spin Coating Method To Deposit Iridium-Based Catalysts onto Silicon for Water Oxidation Photoanodes.16citations

Places of action

Chart of shared publication
King, Laurie A.
1 / 8 shared
Palm, David W.
1 / 1 shared
Strickler, Alaina L.
1 / 1 shared
Higgins, Drew C.
1 / 2 shared
Ben-Naim, Micha
1 / 2 shared
Jaramillo, Thomas F.
1 / 22 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • King, Laurie A.
  • Palm, David W.
  • Strickler, Alaina L.
  • Higgins, Drew C.
  • Ben-Naim, Micha
  • Jaramillo, Thomas F.
OrganizationsLocationPeople

article

A Spin Coating Method To Deposit Iridium-Based Catalysts onto Silicon for Water Oxidation Photoanodes.

  • King, Laurie A.
  • Sanchez, Joel
  • Palm, David W.
  • Strickler, Alaina L.
  • Higgins, Drew C.
  • Ben-Naim, Micha
  • Jaramillo, Thomas F.
Abstract

Silicon has shown promise for use as a small band gap (1.1 eV) absorber material in photoelectrochemical (PEC) water splitting. However, the limited stability of silicon in acidic electrolyte requires the use of protection strategies coupled with catalysts. Herein, spin coating is used as a versatile method to directly coat silicon photoanodes with an IrOxoxygen evolution reaction (OER) catalyst, reducing the processing complexity compared to conventional fabrication schemes. Biphasic strontium chloride/iridium oxide (SrCl2:IrOx) catalysts are also developed, and both catalysts form photoactive junctions with silicon and demonstrate high photoanode activity. The iridium oxide photoanode displays a photocurrent onset at 1.06 V vs reversible hydrogen electrode (RHE), while the SrCl2:IrOxphotoanode onsets earlier at 0.96 V vs RHE. The differing potentials are consistent with the observed photovoltages of 0.43 and 0.53 V for the IrOxand SrCl2:IrOx, respectively. By measuring the oxidation of a reversible redox couple, Fe(CN)63-/4-, we compare the charge carrier extraction of the devices and show that the addition of SrCl2 to the IrOxcatalyst improves the silicon-electrolyte interface compared to pure IrOx. However, the durability of the strontium-containing photoanode remains a challenge, with its photocurrent density decreasing by 90% over 4 h. The IrOxphotoanode, on the other hand, maintained a stable photocurrent density over this timescale. Characterization of the as-prepared and post-tested material structure via Auger electron spectroscopy identifies catalyst film cracking and delamination as the primary failure modes. We propose that improvements to catalyst adhesion should further the viability of spin coating as a technique for photoanode preparation.

Topics
  • density
  • impedance spectroscopy
  • extraction
  • Strontium
  • Hydrogen
  • Silicon
  • durability
  • Auger electron spectroscopy
  • spin coating
  • Iridium