Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brouwer, Albert Manfred

  • Google
  • 7
  • 38
  • 198

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Light-controlled morphological development of self-organizing bioinspired nanocomposites5citations
  • 2023Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices22citations
  • 2023Super-resolution Fluorescence Imaging of Recycled Polymer Blends via Hydrogen Bond-Assisted Adsorption of a Nile Red Derivative1citations
  • 2022Light-Controlled Nucleation and Shaping of Self-Assembling Nanocomposites18citations
  • 2022Molecular rotors to probe the local viscosity of a polymer glass9citations
  • 2020Key Role of Very Low Energy Electrons in Tin-Based Molecular Resists for Extreme Ultraviolet Nanolithography84citations
  • 2015Fluorescence Microscopy Visualization of Contacts Between Objects59citations

Places of action

Chart of shared publication
Bistervels, Marloes H.
1 / 2 shared
Noorduin, Willem
1 / 2 shared
Schoenmaker, Hinco
1 / 2 shared
Hoogendoorn, Niels T.
1 / 1 shared
Kamp, Marko
1 / 2 shared
Bakker, T. M. A.
1 / 1 shared
Mathew, S.
1 / 5 shared
Dieperink, M.
1 / 1 shared
Hasenack, J.
1 / 1 shared
Reek, J. N. H.
1 / 9 shared
Bouwens, T.
1 / 1 shared
Huijser, A.
1 / 1 shared
Zhu, K.
1 / 2 shared
Hsu, C.-C.
1 / 2 shared
Bonn, D.
2 / 34 shared
Rückel, M.
1 / 2 shared
Schoenmakers, H.
1 / 1 shared
Noorduin, W. L.
1 / 10 shared
Bistervels, M. H.
1 / 3 shared
Kamp, M.
1 / 14 shared
Grzelka, Marion
1 / 4 shared
Mirzahossein, Elham
1 / 1 shared
Pan, Zhongcheng
1 / 1 shared
Bonn, Daniel
1 / 23 shared
Habibi, Mehdi
1 / 9 shared
Demirkurt, Begüm
1 / 1 shared
Molen, S. J. Van Der
1 / 5 shared
Castellanos, S.
1 / 3 shared
Haitjema, J.
1 / 2 shared
Zhang, Y.
1 / 149 shared
Bespalov, I.
1 / 2 shared
Tromp, R. M.
1 / 6 shared
Jobst, J.
1 / 4 shared
Suhina, T.
1 / 1 shared
Lorincz, K.
1 / 1 shared
Carpentier, C. E.
1 / 1 shared
Schall, Peter
1 / 16 shared
Weber, B.
1 / 17 shared
Chart of publication period
2024
2023
2022
2020
2015

Co-Authors (by relevance)

  • Bistervels, Marloes H.
  • Noorduin, Willem
  • Schoenmaker, Hinco
  • Hoogendoorn, Niels T.
  • Kamp, Marko
  • Bakker, T. M. A.
  • Mathew, S.
  • Dieperink, M.
  • Hasenack, J.
  • Reek, J. N. H.
  • Bouwens, T.
  • Huijser, A.
  • Zhu, K.
  • Hsu, C.-C.
  • Bonn, D.
  • Rückel, M.
  • Schoenmakers, H.
  • Noorduin, W. L.
  • Bistervels, M. H.
  • Kamp, M.
  • Grzelka, Marion
  • Mirzahossein, Elham
  • Pan, Zhongcheng
  • Bonn, Daniel
  • Habibi, Mehdi
  • Demirkurt, Begüm
  • Molen, S. J. Van Der
  • Castellanos, S.
  • Haitjema, J.
  • Zhang, Y.
  • Bespalov, I.
  • Tromp, R. M.
  • Jobst, J.
  • Suhina, T.
  • Lorincz, K.
  • Carpentier, C. E.
  • Schall, Peter
  • Weber, B.
OrganizationsLocationPeople

article

Key Role of Very Low Energy Electrons in Tin-Based Molecular Resists for Extreme Ultraviolet Nanolithography

  • Molen, S. J. Van Der
  • Castellanos, S.
  • Brouwer, Albert Manfred
  • Haitjema, J.
  • Zhang, Y.
  • Bespalov, I.
  • Tromp, R. M.
  • Jobst, J.
Abstract

Extreme ultraviolet (EUV) lithography (13.5 nm) is the newest technology that allows high-throughput fabrication of electronic circuitry in the sub-20 nm scale. It is commonly assumed that low-energy electrons (LEEs) generated in the resist materials by EUV photons are mostly responsible for the solubility switch that leads to nanopattern formation. Yet, reliable quantitative information on this electron-induced process is scarce. In this work, we combine LEE microscopy (LEEM), electron energy loss spectroscopy (EELS), and atomic force microscopy (AFM) to study changes induced by electrons in the 0–40 eV range in thin films of a state-of-the-art molecular organometallic EUV resist known as tin-oxo cage. LEEM–EELS uniquely allows to correct for surface charging and thus to accurately determine the electron landing energy. AFM postexposure analyses revealed that irradiation of the resist with LEEs leads to the densification of the resist layer because of carbon loss. Remarkably, electrons with energies as low as 1.2 eV can induce chemical reactions in the Sn-based resist. Electrons with higher energies are expected to cause electronic excitation or ionization, opening up more pathways to enhanced conversion. However, we do not observe a substantial increase of chemical conversion (densification) with the electron energy increase in the 2–40 eV range. Based on the dose-dependent thickness profiles, a simplified reaction model is proposed where the resist undergoes sequential chemical reactions, first yielding a sparsely cross-linked network and then a more densely cross-linked network. This model allows us to estimate a maximum reaction volume on the initial material of 0.15 nm<sup>3</sup> per incident electron in the energy range studied, which means that about 10 LEEs per molecule on average are needed to turn the material insoluble and thus render a pattern. Our observations are consistent with the observed EUV sensitivity of tin-oxo cages.

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • thin film
  • atomic force microscopy
  • tin
  • lithography
  • densification
  • electron energy loss spectroscopy
  • organometallic