Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hinz, Alexander

  • Google
  • 6
  • 27
  • 243

Karlsruhe Institute of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Efficient fluorescence of alkali metal carbazolides6citations
  • 2022Complexes of 3d Metals with a Bulky Carbazolyl Ligand1citations
  • 2020Following in Situ the Deposition of Gold Electrodes on Low Band Gap Polymer Films13citations
  • 2018Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source34citations
  • 2017Role of Sputter Deposition Rate in Tailoring Nanogranular Gold Structures on Polymer Surfaces72citations
  • 2015Real-Time Monitoring of Morphology and Optical Properties during Sputter Deposition for Tailoring Metal–Polymer Interfaces117citations

Places of action

Chart of shared publication
Krätschmer, Frederic
1 / 1 shared
Müller, Maximilian P.
1 / 1 shared
Kaiser, Michelle
2 / 2 shared
Rutschmann, Mark
1 / 3 shared
Winkler, Lucas
1 / 1 shared
Semino, Gabriele
1 / 1 shared
Polonskyi, Oleksandr
4 / 16 shared
Faupel, Franz
4 / 46 shared
Müller-Buschbaum, Peter
3 / 471 shared
Roth, Stephan V.
3 / 103 shared
Strunskus, Thomas
4 / 33 shared
Körstgens, Volker
2 / 51 shared
Löhrer, Franziska C.
2 / 9 shared
Schwartzkopf, Matthias
3 / 59 shared
Peter, Tilo
1 / 2 shared
Abraham, Jan Willem
1 / 2 shared
Vasiliauskaite, Egle
1 / 2 shared
Wolf, Sebastian
1 / 5 shared
Fujioka, Kenji
1 / 1 shared
Ahadi, Amir Mohammad
1 / 2 shared
Kersten, Holger
1 / 7 shared
Bonitz, Michael
1 / 1 shared
Rothkirch, André
1 / 7 shared
Brett, Calvin J.
1 / 15 shared
Metwalli, Ezzeldin
1 / 34 shared
Santoro, Gonzalo
1 / 17 shared
Yao, Yuan
1 / 17 shared
Chart of publication period
2023
2022
2020
2018
2017
2015

Co-Authors (by relevance)

  • Krätschmer, Frederic
  • Müller, Maximilian P.
  • Kaiser, Michelle
  • Rutschmann, Mark
  • Winkler, Lucas
  • Semino, Gabriele
  • Polonskyi, Oleksandr
  • Faupel, Franz
  • Müller-Buschbaum, Peter
  • Roth, Stephan V.
  • Strunskus, Thomas
  • Körstgens, Volker
  • Löhrer, Franziska C.
  • Schwartzkopf, Matthias
  • Peter, Tilo
  • Abraham, Jan Willem
  • Vasiliauskaite, Egle
  • Wolf, Sebastian
  • Fujioka, Kenji
  • Ahadi, Amir Mohammad
  • Kersten, Holger
  • Bonitz, Michael
  • Rothkirch, André
  • Brett, Calvin J.
  • Metwalli, Ezzeldin
  • Santoro, Gonzalo
  • Yao, Yuan
OrganizationsLocationPeople

article

Following in Situ the Deposition of Gold Electrodes on Low Band Gap Polymer Films

  • Semino, Gabriele
  • Polonskyi, Oleksandr
  • Faupel, Franz
  • Hinz, Alexander
  • Müller-Buschbaum, Peter
  • Roth, Stephan V.
  • Strunskus, Thomas
  • Körstgens, Volker
  • Löhrer, Franziska C.
  • Schwartzkopf, Matthias
Abstract

Metal top electrodes such as gold are widely used in organic solar cells. The active layer can be optimized by modifications of the polymer band gap via side-chain engineering, and low band gap polymers based on benzodithiophene units such as PTB7 and PTB7-Th are successfully used. The growth of gold contacts on PTB7 and PTB7-Th films is investigated with in situ grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) during the sputter deposition of gold. From GIWAXS, the crystal structure of the gold film is determined. Independent of the type of side chain, gold crystals form in the very early stages and improve in quality during the sputter deposition until the late stages. From GISAXS, the nanoscale structure is determined. Differences in terms of gold cluster size and growth phase limits for the two polymers are caused by the side-chain modification and result in a different surface coverage in the early phases. The changes in the diffusion and coalescence behavior of the forming gold nanoparticles cause differences in the morphology of the gold contact in the fully percolated regime, which is attributed to the different amount of thiophene rings of the side chains acting as nucleation sites.

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • surface
  • cluster
  • polymer
  • phase
  • gold
  • forming
  • wide-angle X-ray scattering
  • percolated