People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Massabuau, Fcp
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Constant Photocurrent Method to Probe the Sub‐Bandgap Absorption in Wide Bandgap Semiconductor Films: The Case of α‐Ga<sub>2</sub>O<sub>3</sub>citations
- 2024Constant Photocurrent Method to Probe the Sub-Bandgap Absorption in Wide Bandgap Semiconductor Films: The Case of α-Ga 2 O 3
- 2021Defect structures in (001) zincblende GaN/3CSiC nucleation layerscitations
- 2021Defect structures in (001) zincblende GaN/3C-SiC nucleation layerscitations
- 2021Directly correlated microscopy of trench defects in InGaN quantum wellscitations
- 2020Piezoelectric III-V and II-VI semiconductorscitations
- 2020Integrated wafer scale growth of single crystal metal films and high quality graphenecitations
- 2020Dislocations as channels for the fabrication of sub-surface porous GaN by electrochemical etchingcitations
- 2019Investigation of MOVPE-grown zincblende GaN nucleation layers on 3CSiC/Si substratescitations
- 2019Thick adherent diamond films on AlN with low thermal barrier resistancecitations
- 2019Low temperature growth and optical properties of α-Ga2O3 deposited on sapphire by plasma enhanced atomic layer depositioncitations
- 2017Mechanisms preventing trench defect formation in InGaN/GaN quantum well structures using hydrogen during GaN barrier growth
- 2017X-ray diffraction analysis of cubic zincblende III-nitrides
- 2017Dislocations in AlGaN: core structure, atom segregation, and optical propertiescitations
- 2014Structure and strain relaxation effects of defects in InxGa1-xN epilayerscitations
- 2014Structure and strain relaxation effects of defects in In x Ga 1-x N epilayers
- 2013Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wellscitations
- 2012Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structurescitations
- 2011The effects of Si doping on dislocation movement and tensile stress in GaN filmscitations
Places of action
Organizations | Location | People |
---|
article
Thick adherent diamond films on AlN with low thermal barrier resistance
Abstract
<p>The growth of >100-μm-thick diamond layers adherent on aluminum nitride with low thermal boundary resistance between diamond and AlN is presented in this work. The thermal barrier resistance was found to be in the range of 16 m<sup>2</sup>·K/GW, which is a large improvement on the current state-of-the-art. While thick films failed to adhere on untreated AlN films, AlN films treated with hydrogen/nitrogen plasma retained the thick diamond layers. Clear differences in ζ-potential measurement confirm surface modification due to hydrogen/nitrogen plasma treatment. An increase in non-diamond carbon in the initial layers of diamond grown on pretreated AlN is seen by Raman spectroscopy. The presence of non-diamond carbon has minimal effect on the thermal barrier resistance. The surfaces studied with X-ray photoelectron spectroscopy revealed a clear distinction between pretreated and untreated samples. The surface aluminum goes from a nitrogen-rich environment to an oxygen-rich environment after pretreatment. A clean interface between diamond and AlN is seen by cross-sectional transmission electron microscopy.</p>