Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Trentin, Andressa

  • Google
  • 7
  • 31
  • 50

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2025Exploring lignin potential on polyurethane-silica hybrid coatings tribological, anticorrosive and bactericidal propertiescitations
  • 2024Backgrounds for Studying Impact of Different Water Environments on Welded Steels for Low and Intermediate-Level Waste Repositories in Finlandcitations
  • 2023Influence of pre-treatments on adhesion, barrier and mechanical properties of epoxy coatings6citations
  • 2023Influence of pre-treatments on adhesion, barrier and mechanical properties of epoxy coatings:A comparison between steel, AA7075 and AA20246citations
  • 2023A closer look at the corrosion of steel liner embedded in concrete3citations
  • 2023A closer look at the corrosion of steel liner embedded in concrete3citations
  • 2019Dual Role of Lithium on the Structure and Self-Healing Ability of PMMA-Silica Coatings on AA7075 Alloy32citations

Places of action

Chart of shared publication
Pulcinelli, Sandra
1 / 1 shared
Nurmela, Asta
1 / 11 shared
Harb, Samarah
1 / 1 shared
Braz, Alvaro
1 / 1 shared
Pakarinen, Janne
1 / 15 shared
Seal, Sudipta
1 / 8 shared
Kolanthai, Elayaraja
1 / 1 shared
Santilli, Celso
1 / 1 shared
Nuppunen-Puputti, Maija
1 / 5 shared
Ratia-Hanby, Vilma L.
1 / 13 shared
Ohligschläger, Thomas
1 / 12 shared
Alimbekova, Amina
1 / 2 shared
Nguyen, Quynh
1 / 5 shared
Samiee, R.
2 / 3 shared
Galusek, D.
2 / 17 shared
Duran, A.
2 / 7 shared
Castro, Y.
2 / 5 shared
Pakseresht, A. H.
2 / 3 shared
Ferreira, Rui Miguel
1 / 21 shared
Huttunen-Saarivirta, Elina
2 / 40 shared
Bohner, Edgar
2 / 10 shared
Ferreira, Miguel
1 / 11 shared
Harb, Samarah V.
1 / 6 shared
Pletincx, Sven
1 / 12 shared
Hammer, Peter
1 / 5 shared
Santilli, Celso V.
1 / 4 shared
Marcoen, Kristof
1 / 33 shared
Terryn, Herman
1 / 124 shared
Uvida, Mayara C.
1 / 1 shared
Pulcinelli, Sandra H.
1 / 4 shared
Hauffman, Tom
1 / 59 shared
Chart of publication period
2025
2024
2023
2019

Co-Authors (by relevance)

  • Pulcinelli, Sandra
  • Nurmela, Asta
  • Harb, Samarah
  • Braz, Alvaro
  • Pakarinen, Janne
  • Seal, Sudipta
  • Kolanthai, Elayaraja
  • Santilli, Celso
  • Nuppunen-Puputti, Maija
  • Ratia-Hanby, Vilma L.
  • Ohligschläger, Thomas
  • Alimbekova, Amina
  • Nguyen, Quynh
  • Samiee, R.
  • Galusek, D.
  • Duran, A.
  • Castro, Y.
  • Pakseresht, A. H.
  • Ferreira, Rui Miguel
  • Huttunen-Saarivirta, Elina
  • Bohner, Edgar
  • Ferreira, Miguel
  • Harb, Samarah V.
  • Pletincx, Sven
  • Hammer, Peter
  • Santilli, Celso V.
  • Marcoen, Kristof
  • Terryn, Herman
  • Uvida, Mayara C.
  • Pulcinelli, Sandra H.
  • Hauffman, Tom
OrganizationsLocationPeople

article

Dual Role of Lithium on the Structure and Self-Healing Ability of PMMA-Silica Coatings on AA7075 Alloy

  • Harb, Samarah V.
  • Pletincx, Sven
  • Hammer, Peter
  • Santilli, Celso V.
  • Marcoen, Kristof
  • Trentin, Andressa
  • Terryn, Herman
  • Uvida, Mayara C.
  • Pulcinelli, Sandra H.
  • Hauffman, Tom
Abstract

<p>In this work, structural and active corrosion inhibition effects induced by lithium ion addition in organic-inorganic coatings based on poly(methyl methacrylate) (PMMA)-silica sol-gel coatings have been investigated. The addition of increasing amounts of lithium carbonate (0, 500, 1000, and 2000 ppm), yielded homogeneous hybrid coatings with increased connectivity of nanometric silica cross-link nodes, covalently linked to the PMMA matrix, and improved adhesion to the aluminum substrate (AA7075). Electrochemical impedance spectroscopy (EIS), performed in 3.5% NaCl aqueous solution, showed that the improved structural properties of coatings with higher lithium loadings result in an increased corrosion resistance, with an impedance modulus up to 50 Gω cm<sup>2</sup>, and revealed that the lithium induced self-healing ability significantly improves their durability. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) suggest that the regeneration process occurs by means of lithium ions leaching from the adjacent coating toward the corrosion spot, which is restored by a protective layer of precipitated Li rich aluminum hydroxide species. An analogue mechanism has been proposed for artificially scratched coatings presenting an increase of the impedance modulus after salt spray test compared to the lithium free coating. These results evidence the active role of lithium ions in improving the passive barrier of the PMMA-silica coating and in providing through the self-restoring ability a significantly extended service life of AA7075 alloy exposed to saline environment.</p>

Topics
  • corrosion
  • x-ray photoelectron spectroscopy
  • aluminium
  • leaching
  • Lithium
  • electrochemical-induced impedance spectroscopy
  • durability
  • spectrometry
  • selective ion monitoring
  • secondary ion mass spectrometry