Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zickler, Gregor Alexander

  • Google
  • 1
  • 4
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Particle Consolidation and Electron Transport in Anatase TiO2 Nanocrystal Films13citations

Places of action

Chart of shared publication
Redhammer, Günther J.
1 / 9 shared
Anta, Juan Antonio
1 / 1 shared
Rettenmaier, Karin
1 / 1 shared
Berger, Thomas
1 / 9 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Redhammer, Günther J.
  • Anta, Juan Antonio
  • Rettenmaier, Karin
  • Berger, Thomas
OrganizationsLocationPeople

article

Particle Consolidation and Electron Transport in Anatase TiO2 Nanocrystal Films

  • Redhammer, Günther J.
  • Anta, Juan Antonio
  • Rettenmaier, Karin
  • Berger, Thomas
  • Zickler, Gregor Alexander
Abstract

<p>A sequence of chemical vapor synthesis and thermal annealing in defined gas atmospheres was used to prepare phase-pure anatase TiO<sub>2</sub> nanocrystal powders featuring clean surfaces and a narrow particle size distribution with a median particle diameter of 14.5 ± 0.5 nm. Random networks of these nanocrystals were immobilized from aqueous dispersions onto conducting substrates and are introduced as model systems for electronic conductivity studies. Thermal annealing of the immobilized films at 100 °C &lt; T &lt; 450 °C in air was performed to generate particle-particle contacts upon virtual preservation of the structural properties of the nanoparticle films. The distribution of electrochemically active electronic states as well as the dependence of the electronic conductivity on the Fermi level position in the semiconductor films was studied in aqueous electrolytes in situ using electrochemical methods. An exponential distribution of surface states is observed to remain unchanged upon sintering. However, capacitive peaks corresponding to deep electron traps in the nanoparticle films shift positive on the potential scale evidencing an increase of the trapping energy upon progressive thermal annealing. These peaks are attributed to trap states at particle-particle interfaces in the random nanocrystal network (i.e., at grain boundaries). In the potential region, where the capacitive peaks are detected, we observe an exponential conductivity variation by up to 5 orders of magnitude. The potential range featuring the exponential conductivity variation shifts positive by up to 0.15 V when increasing the sintering temperature from 100 to 450 °C. Importantly, all films approach a potential- and sinteringerature-independent maximum conductivity of 10<sup>-4</sup> ω<sup>-1</sup>·cm<sup>-1</sup> at more negative potentials. On the basis of these results we introduce a qualitative model, which highlights the detrimental impact of electron traps located on particle-particle interfaces on the electronic conductivity in random semiconductor nanoparticle networks.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • dispersion
  • surface
  • grain
  • phase
  • semiconductor
  • annealing
  • random
  • sintering