People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gengenbach, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Interpretation of Complex X-ray Photoelectron Peak Shapes Part II: Case Study of Fe 2p3/2 fitting applied to Austenitic Stainless Steels 316 and 304.citations
- 2020Covalent sizing surface modification as a route to improved interfacial adhesion in carbon fiber-epoxy compositescitations
- 2020Investigating the real-time dissolution of a compositionally complex alloy using inline ICP and correlation with XPScitations
- 2020Real-time dissolution of a compositionally complex alloy using inline ICP and correlation with XPScitations
- 2020Improving the Stability of Ambient-Processed SnO2-Based, Perovskite Solar Cells by UV-Treatment of the Sub-Cellscitations
- 2020Improving the Stability of Ambient processed, SnO2-Based, Perovskite Solar Cells by the UV-treatment of Sub-Cellscitations
- 2019Electrocatalytic CO2 reduction to formate on Cu based surface alloys with enhanced selectivitycitations
- 2019Fiber with Butterfly Wings: Creating Colored Carbon Fibers with Increased Strength, Adhesion, and Reversible Malleabilitycitations
- 2018Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve applicationcitations
- 2017Limitations with solvent exchange methods for synthesis of colloidalfullerenescitations
- 2017Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with λ-carrageenancitations
- 2016Effect of the deformability of guest particles on the tensile strength of tablets from interactive mixturescitations
- 2014Water-dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agentscitations
- 2012One step multifunctional micropatterning of surfaces using asymmetric glow discharge plasma polymerisation
- 2011Characterization of the surface properties of a model pharmaceutical fine powder modified with a pharmaceutical lubricant to improve flow via a mechanical dry coating approachcitations
Places of action
Organizations | Location | People |
---|
article
Fiber with Butterfly Wings: Creating Colored Carbon Fibers with Increased Strength, Adhesion, and Reversible Malleability
Abstract
Colored and color-changing materials are central to perception and interaction in nature and have been exploited in an array of modern technologies such as sensors, visual displays and smart materials. Attempts to introduce color into carbon fiber materials have been limited by deleterious impacts on fiber properties, and the extension of colored fibers towards ‘smart composites’ remains in its infancy. We present carbon fibers incorporating structural color, similar to that observed on the surface of soap bubbles and various insects and birds, by modifying the fiber surface through in situ polymerization grafting. When dry, the treated fibers exhibit a striking blue color, but when exposed to a volatile solvent, a cascade of colors across the visible region is observed as the film first swells and then shrinks as the solvent evaporates. The treated fibers not only possess a unique color and color-changing ability, but can also be reversibly formed into complex shapes and bear significant loads even without being encased in a supporting polymer. The tensile strength of treated fibers shows a statistically significant increase (+12%) and evaluation of the fiber-to-matrix adhesion of these polymers to an epoxy resin shows more than 300% improvement over control fibers. This approach creates a new platform for the multifaceted advance of smart composites.