People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wolff, Niklas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Demonstration and STEM Analysis of Ferroelectric Switching in MOCVD‐Grown Single Crystalline Al0.85Sc0.15Ncitations
- 2024Demonstration and STEM Analysis of Ferroelectric Switching in MOCVD‐Grown Single Crystalline Al<sub>0.85</sub>Sc<sub>0.15</sub>Ncitations
- 2023Unlocking High‐Performance Supercapacitor Behavior and Sustained Chemical Stability of 2D Metallic CrSe<sub>2</sub> by Optimal Electrolyte Selectioncitations
- 2023Synthesis and Nanostructure Investigation of Hybrid β-Ga2 O3 /ZnGa2 O4 Nanocomposite Networks with Narrow-Band Green Luminescence and High Initial Electrochemical Capacitycitations
- 2022Ultrathin Al1−xScxN for Low‐Voltage‐Driven Ferroelectric‐Based Devicescitations
- 2022Investigation of Wafer-Level Fabricated Permanent Micromagnets for MEMScitations
- 2022Control of magnetoelastic coupling in Ni/Fe multilayers using He+ ion irradiationcitations
- 2021Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScNcitations
- 2020Facile fabrication of semiconducting oxide nanostructures by direct ink writing of readily available metal microparticles and their application as low power acetone gas sensorscitations
- 2020Nanocharacterization of Functional Materials for Biomagnetic Sensing an Breath Analysis ; Charakterisierung funktionaler Nanomaterialien für biomagnetische Sensoren und Atemanalyse
- 2019Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensorscitations
- 2019The effect of morphology and functionalization on UV detection properties of ZnO networked tetrapods and single nanowirescitations
- 2018Zinc oxide nanotetrapods with four different arm morphologies for versatile nanosensorscitations
- 2018ZnAl2O4-Functionalized Zinc Oxide Microstructures for Highly Selective Hydrogen Gas Sensing Applicationscitations
- 2016Single and networked CuO nanowires for highly sensitive p-type semiconductor gas sensor applicationscitations
Places of action
Organizations | Location | People |
---|
article
Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors
Abstract
In this research, the lowerature single-step electrochemical deposition of arrayed ZnO nanowires (NWs) decorated by Au nanoparticles (NPs) with diameters ranging between 10 and 100 nm is successfully demonstrated for the first time. The AuNPs and ZnO NWs were grown simultaneously in the same growth solution in consideration of the HAuCl4 concentration. Optical, structural, and chemical characterizations were analyzed in detail, proving high crystallinity of the NWs as well as the distribution of Au NPs on the surface of zinc oxide NWs demonstrated by transmission electron microscopy. Individual Au NPs-functionalized ZnO NWs (Au-NP/ZnO-NWs) were incorporated into sensor nanodevices using an focused ion bean/scanning electron microscopy (FIB/SEM) scientific instrument. The gas-sensing investigations demonstrated excellent selectivity to hydrogen gas at room temperature (RT) with a gas response, Igas/Iair, as high as 7.5-100 ppm for Au-NP/ZnO-NWs, possessing a AuNP surface coverage of â¼6.4%. The concentration of HAuCl4 in the electrochemical solution was observed to have no significant impact on the gas-sensing parameters in our experiments. This highlights the significant influence of the total Au/ZnO interfacial area establishing Schottky contacts for the achievement of high performances. The most significant performance of H2 response was observed for gas concentrations higher than 500 ppm of H2 in the environment, which was attributed to the surface metallization of ZnO NWs during exposure to hydrogen. For this case, an ultrahigh response of about 32.9 and 47 to 1000 and 5000 ppm of H2 was obtained, respectively. Spin-polarized periodic density functional theory calculations were realized on Au/ZnO bulk and surface-functionalized models, validating the experimental hypothesis. The combination of H2 gas detection at RT, ultralow power consumption, and reduced dimensions makes these micro-nanodevices excellent candidates for hydrogen gas leakage detection, including hydrogen gas monitoring (less than 1 ppm).