People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mannsfeld, Stefan C. B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Impact of Thermal Annealing on the Dissolution of Semiconducting Polymer Thin Filmscitations
- 2024Eco‐Friendly Approach to Ultra‐Thin Metal Oxides‐ Solution Sheared Aluminum Oxide for Half‐Volt Operation of Organic Field‐Effect Transistorscitations
- 2023Tailoring the Morphology of a Diketopyrrolopyrrole-based Polymer as Films or Wires for High-Performance OFETs using Solution Shearingcitations
- 2023Band Structure Engineering in Highly Crystalline Organic Semiconductorscitations
- 2023On-water surface synthesis of electronically coupled 2D polyimide-MoS2 van der Waals heterostructurecitations
- 2023Influence of chemical interactions on the electronic properties of BiOI/organic semiconductor heterojunctions for application in solution-processed electronics
- 2022Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b] thiophene thin filmscitations
- 2022Investigating the morphology of bulk heterojunctions by laser photoemission electron microscopycitations
- 2021Band gap engineering in blended organic semiconductor films based on dielectric interactionscitations
- 2021Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics
- 2021Ultrasoft and High‐Mobility Block Copolymers for Skin‐Compatible Electronicscitations
- 2020Near–atomic-scale observation ofgrain boundaries inalayer-stacked two-dimensional polymercitations
- 2020Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics
- 2019Anisotropic Polaron Delocalization in Conjugated Homopolymers and Donor-Acceptor Copolymerscitations
- 2019Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cellscitations
- 2019Mitigating Meniscus Instabilities in Solution-Sheared Polymer Films for Organic Field-Effect Transistorscitations
- 2018Alkyl Branching Position in Diketopyrrolopyrrole Polymerscitations
- 2014One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Mitigating Meniscus Instabilities in Solution-Sheared Polymer Films for Organic Field-Effect Transistors
Abstract
<p>Semiconducting donor-acceptor copolymers are considered to be a promising material class for solution-coated, large-scale organic electronic applications. A large number of works have shown that the best-performing organic field-effect transistors (OFETs) are obtained on low-surface-energy substrates. The meniscus instabilities that occur when coating on such surfaces considerably limit the effective deposition speeds. This represents a limiting factor for the upscaling of device fabrication for mass production, an issue that needs to be addressed if organic electronic devices are ever to become commercially relevant. In this work, we present a method to increase the accessible window of coating speeds for the solution shearing of donor-acceptor semiconductor polymers for the fabrication of OFETs. By incorporating a piezo crystal that is capable of producing high-frequency vibrations into the coating head, we are able to mitigate contact line instabilities due to the depinning of the contact line, thereby suppressing the commonly encountered "stick-and-slip" phenomenon.</p>