People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skirtach, Andre
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Insights in the structural hierarchy of statically crystallized palm oilcitations
- 2024Insights in the structural hierarchy of statically crystallized palm oilcitations
- 2024From nucleation to fat crystal network : effects of stearic-palmitic sucrose ester on static crystallization of palm oilcitations
- 2024Ratiometric dual-emitting thermometers based on rhodamine B dye-incorporated (nano) curcumin periodic mesoporous organosilicas for bioapplicationscitations
- 2022The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compoundscitations
- 2022Improving green Yb3+/Er3+ upconversion luminescence by co-doping metal ions into an oxyfluoride matrix
- 2022Hybrid lanthanide-doped rattle-type thermometers for theranosticscitations
- 2022Hybrid NaYF4:Er,Yb@NaYF4@nano-MOF@AuNPs@LB composites for Yb3+-Er3+ physiological thermometrycitations
- 2022The influence of bases on thermal decomposition synthesis of LaF3
- 2021Hydrothermal synthesis of barium titanate nano/microrods and particle agglomerates using a sodium titanate precursorcitations
- 2021Combining fat and waxes in hybrid systems for bakery application
- 2020Temperature Window for Encapsulation of an Enzyme into Thermally Shrunk, CaCO3 Templated Polyelectrolyte Multilayer Capsules.citations
- 2020Temperature window for encapsulation of an enzyme into thermally shrunk, CaCO3 templated polyelectrolyte multilayer capsulescitations
- 2020Alkaline phosphatase delivery system based on calcium carbonate carriers for acceleration of ossificationcitations
- 2020Alkaline phosphatase delivery system based on calcium carbonate carriers for acceleration of ossificationcitations
- 2019Piezoelectric 3-D fibrous poly(3-hydroxybutyrate)-based scaffolds ultrasound-mineralized with calcium carbonate for bone tissue engineering : inorganic phase formation, osteoblast cell adhesion, and proliferationcitations
- 2019The effect of hybrid coatings based on hydrogel, biopolymer and inorganic components on the corrosion behavior of titanium bone implants.citations
- 2018Nanostructured biointerfaces based on bioceramic calcium carbonate/hydrogel coatings on titanium with an active enzyme for stimulating osteoblasts growthcitations
- 2012Control of cell adhesion by mechanical reinforcement of soft polyelectrolyte films with nanoparticlescitations
- 2011Neuron cells uptake of polymeric microcapsules and subsequent intracellular releasecitations
- 2011Release properties of pressurized microgel templated capsulescitations
- 2006Preparation of polyelectrolyte microcapsules with silver and gold nanoparticles in a shell and the remote destruction of microcapsules under laser irradiationcitations
Places of action
Organizations | Location | People |
---|
article
Piezoelectric 3-D fibrous poly(3-hydroxybutyrate)-based scaffolds ultrasound-mineralized with calcium carbonate for bone tissue engineering : inorganic phase formation, osteoblast cell adhesion, and proliferation
Abstract
Elaboration of novel biocomposites providing simultaneously both biodegradability and stimulated bone tissue repair is essential for regenerative medicine. In particular, piezoelectric biocomposites are attractive because of a possibility to electrically stimulate cell response. In the present study, novel CaCO3-mineralized piezoelectric biodegradable scaffolds based on two polymers, poly[(R)3-hydroxybutyrate] (PHB) and poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (PHBV), are presented. Mineralization of the scaffold surface is carried out by the in situ synthesis of CaCO3 in the vaterite and calcite polymorphs using ultrasound (U/S). Comparative characterization of PHB and PHBV scaffolds demonstrated an impact of the porosity and surface charge on the mineralization in a dynamic mechanical system, as no essential distinction was observed in wettability, structure, and surface chemical compositions. A significantly higher (4.3 times) piezoelectric charge and a higher porosity (similar to 15%) lead to a more homogenous CaCO3 growth in 3-D fibrous structures and result in a two times higher relative mass increase for PHB scaffolds compared to that for PHBV. This also increases the local ion concentration incurred upon mineralization under U/S-generated dynamic mechanical conditions. The modification of the wettability for PHB and PI-BV scaffolds from hydrophobic (nonmineralized fibers) to superhydrophilic (mineralized fibers) led to a pronounced apatite-forming behavior of scaffolds in a simulated body fluid. In turn, this results in the formation of a dense monolayer of well-distributed and proliferated osteoblast cells along the fibers. CaCO3-mineralized PHBV surfaces had a higher osteoblast cell adhesion and proliferation assigned to a higher amount of CaCO3 on the surface compared to that on PHB scaffolds, as incurred from micro-computed tomography (mu CT). Importantly, a cell viability study confirmed biocompatibility of all the scaffolds. Thus, hybrid biocomposites based on the piezoelectric PHB polymers represent an effective scaffold platform functionalized by an inorganic phase and stimulating the growth of the bone tissue.