People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mattia, Davide
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2021Hydrophobic poly(vinylidene fluoride) / siloxene nanofiltration membranescitations
- 2021Hydrophobic poly(vinylidene fluoride) / siloxene nanofiltration membranescitations
- 2020High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltrationcitations
- 2020High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltrationcitations
- 2019Surface-controlled water flow in nanotube membranescitations
- 2019Surface-controlled water flow in nanotube membranescitations
- 2018Bean seedling growth enhancement using magnetite nanoparticlescitations
- 2014ZnO Nanostructured photo-catalytic films obtained by anodization and its application in the degradation of organic pollutants
- 2010Water transport through nanoporous materialscitations
- 2006Effect of Graphitization on the Wettability and Electrical Conductivity of CVD-Carbon Nanotubes and Films
- 2006Filling carbon nanopipes with functional nanoparticles
- 2005Wetting of HIP AlN-TiB2 ceramic composites by liquid metals and alloys
- 2005Oxidation behaviour of an aluminium nitride-hafnium diboride ceramic composite
Places of action
Organizations | Location | People |
---|
article
Surface-controlled water flow in nanotube membranes
Abstract
<p>The independent effect of nanotube surface chemistry and structure on the flow of water under nanoscale confinement is demonstrated in this paper for the first time via the synthesis of novel carbon nitride nanotube (CNNT) membranes. Using a combination of experiments and high-fidelity molecular dynamics (MD) simulations, it is shown here that the hydrophilization of the sp<sup>2</sup> carbon structure, induced by the presence of the C-N bonds, decreases the pure water permeance in CNNTs when compared with pristine and turbostratic carbon nanotubes (CNTs). The MD simulations are based on a model true to the chemical structure of the synthesized nanotubes, built from spectroscopy measurements and calibrated potentials using droplet experiments. The effect on permeance is explained in terms of solid-liquid interactions at the nanotube wall with increased water viscosity and decreased surface diffusion near the CNNT wall, when compared to CNTs. A model directly linking the solid-liquid interactions to the water permeance is presented, showing good agreement with both experiments and MD simulations. This work opens the way to tailoring surface chemistry and structure inside nanotube membranes for a wide range of transport and separation processes.</p>