Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hong, Sang-Hyun

  • Google
  • 1
  • 3
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property44citations

Places of action

Chart of shared publication
Leem, Young-Chul
1 / 1 shared
Kim, Na-Yeong
1 / 1 shared
Park, Jin-Ho
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Leem, Young-Chul
  • Kim, Na-Yeong
  • Park, Jin-Ho
OrganizationsLocationPeople

article

Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property

  • Hong, Sang-Hyun
  • Leem, Young-Chul
  • Kim, Na-Yeong
  • Park, Jin-Ho
Abstract

We demonstrated the effects of monolayer graphene and hexagonal boron nitride (h-BN) on the stability and detection performance of two types of substrates in surface-enhanced Raman scattering (SERS): a two-dimensional (2D) monolayer/Ag nanoparticle (NP) substrate and a Au NP/2D monolayer/Ag NP substrate. Graphene and h-BN, which have different electrical and chemical properties, were introduced in close contact with the metal NPs and had distinctly different effects on the plasmonic near-field interactions between metal NPs in the subnanometer-scale gap and on the electron transport behavior. A quantitative comparison was possible due to reproducible SERS signals across the entire substrates prepared by simple and inexpensive fabrication methods. The hybrid platform, an insulating h-BN monolayer covering the Ag NP substrate, ensured the long-term oxidative stability for over 80 days, which was superior to the stability achieved using conducting graphene. Additionally, a sandwich structure using an h-BN monolayer exhibited excellent SERS sensitivity with a detection limit for rhodamine 6G as low as 10(-12) M; to the best of our knowledge, this is the best SERS detection limit achieved using monolayer h-BN as a gap control material. In this study, we suggest an efficient strategy for hybridizing the desired 2D layers with metal nanostructures for SERS applications, where the substrate stability and electromagnetic field enhancement are particularly crucial for the various applications that utilize metal/2D hybrid structures.

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • nitride
  • Boron
  • two-dimensional