Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Viehrig, Marlitt

  • Google
  • 2
  • 10
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Injection-Molded Microfluidic Device for SERS Sensing Using Embedded Au-Capped Polymer Nanocones44citations
  • 2016Nanocellulose based piezoelectric sensorscitations

Places of action

Chart of shared publication
Boisen, Anja
1 / 62 shared
Thilsted, Anil H.
1 / 1 shared
Matteucci, Marco
1 / 12 shared
Schmidt, Michael S.
1 / 1 shared
Catak, Darmin
1 / 2 shared
Zór, Kinga
1 / 5 shared
Wu, Kaiyu
1 / 4 shared
Tuukkanen, Sampo
1 / 22 shared
Kallio, Pasi
1 / 16 shared
Rajala, Satu
1 / 7 shared
Chart of publication period
2018
2016

Co-Authors (by relevance)

  • Boisen, Anja
  • Thilsted, Anil H.
  • Matteucci, Marco
  • Schmidt, Michael S.
  • Catak, Darmin
  • Zór, Kinga
  • Wu, Kaiyu
  • Tuukkanen, Sampo
  • Kallio, Pasi
  • Rajala, Satu
OrganizationsLocationPeople

article

Injection-Molded Microfluidic Device for SERS Sensing Using Embedded Au-Capped Polymer Nanocones

  • Boisen, Anja
  • Thilsted, Anil H.
  • Viehrig, Marlitt
  • Matteucci, Marco
  • Schmidt, Michael S.
  • Catak, Darmin
  • Zór, Kinga
  • Wu, Kaiyu
Abstract

To enable affordable detection and diagnostic, there is a need for low-cost and mass producible miniaturized sensing platforms. We present a fully polymeric microfluidic lab-on-a-chip device with integrated gold (Au)-capped nanocones for sensing applications based on surface-enhanced Raman spectroscopy (SERS). All base components of the device were fabricated via injection molding (IM) and can be easily integrated using ultrasonic welding. The SERS sensor array, embedded in the bottom of a fluidic channel, was created by evaporating Au onto IM nanocone structures, resulting in densely packed Au-capped SERS active nanostructures. Using a Raman active model analyte, trans-1,2-bis-(4-pyridyl)-ethylene, we found a surface-averaged SERS enhancement factor of ∼5 × 10<sup>6</sup> with a relative standard deviation of 14% over the sensor area (2 × 2 mm<sup>2</sup>), and a 18% signal variation among substrates. This reproducible fabrication method is cost-effective, less time consuming, and allows mass production of fully integrated polymeric, microfluidic systems with embedded high-density and high-aspect ratio SERS sensor.

Topics
  • density
  • impedance spectroscopy
  • surface
  • polymer
  • laser emission spectroscopy
  • gold
  • ultrasonic
  • injection molding
  • Raman spectroscopy