Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malavazi, Iran

  • Google
  • 3
  • 30
  • 54

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Heterogeneity in the transcriptional response of the human pathogen <i>Aspergillus fumigatus</i> to the antifungal agent caspofungin20citations
  • 2020PDMS-urethanesil hybrid multifunctional materials: Combining CO2 use and sol-gel processing10citations
  • 2018Acidic Dressing Based on Agarose/Cs2.5H0.5PW12O40 Nanocomposite for Infection Control in Wound Care.24citations

Places of action

Chart of shared publication
Goldman, Gustavo Henrique
1 / 1 shared
Reis, Thaila
1 / 1 shared
Jaber, Qais Z.
1 / 1 shared
Brown, Alec
1 / 1 shared
Fridman, Micha
1 / 1 shared
Rocha, Marina Campos
1 / 1 shared
Pardeshi, Lakhansing
1 / 1 shared
Costa, Jonas Henrique
1 / 1 shared
Wong, Koon Ho
1 / 1 shared
Colabardini, Ana Cristina
1 / 1 shared
Wang, Fang
1 / 6 shared
Dong, Zhiqiang
1 / 2 shared
Aguiar, Flavio H. B.
1 / 1 shared
Schneider, Ricardo
1 / 1 shared
Ribeiro, Sidney J. L.
1 / 8 shared
Rischka, Klaus
1 / 5 shared
Wong Chi Man, Michel
1 / 4 shared
Bini, Rafael A.
1 / 2 shared
Passeti, Tania A.
1 / 1 shared
Pereira, Renata
1 / 1 shared
Bearzi, Jefferson R.
1 / 1 shared
Lima, Elton F. S.
1 / 1 shared
Rodrigues Filho, Ubirajara Pereira
1 / 1 shared
Rossi De Aguiar, Kelen M. F.
1 / 1 shared
Günther, Florian
1 / 3 shared
Imasato, Hidetake
1 / 1 shared
Santos, Marcio L.
1 / 1 shared
Simões, Mateus B.
1 / 1 shared
Rocha, Marina C.
1 / 1 shared
Maria Do, Carmo A. J. Mainardi
1 / 1 shared
Chart of publication period
2022
2020
2018

Co-Authors (by relevance)

  • Goldman, Gustavo Henrique
  • Reis, Thaila
  • Jaber, Qais Z.
  • Brown, Alec
  • Fridman, Micha
  • Rocha, Marina Campos
  • Pardeshi, Lakhansing
  • Costa, Jonas Henrique
  • Wong, Koon Ho
  • Colabardini, Ana Cristina
  • Wang, Fang
  • Dong, Zhiqiang
  • Aguiar, Flavio H. B.
  • Schneider, Ricardo
  • Ribeiro, Sidney J. L.
  • Rischka, Klaus
  • Wong Chi Man, Michel
  • Bini, Rafael A.
  • Passeti, Tania A.
  • Pereira, Renata
  • Bearzi, Jefferson R.
  • Lima, Elton F. S.
  • Rodrigues Filho, Ubirajara Pereira
  • Rossi De Aguiar, Kelen M. F.
  • Günther, Florian
  • Imasato, Hidetake
  • Santos, Marcio L.
  • Simões, Mateus B.
  • Rocha, Marina C.
  • Maria Do, Carmo A. J. Mainardi
OrganizationsLocationPeople

article

Acidic Dressing Based on Agarose/Cs2.5H0.5PW12O40 Nanocomposite for Infection Control in Wound Care.

  • Malavazi, Iran
Abstract

Regulation of wound pH from alkaline to acidic is a simple and powerful approach to reduce wound microbial colonization and infection. Here, we present a nanocomposite material possessing intrinsic acidic surface pH as an innovative antimicrobial wound dressing. This material comprises an agarose matrix nanocomposite containing nanoparticles (NPs) of the cesium salt of phosphotungstic heteropolyacid (Cs2.5H0.5PW12O40). Self-supporting films were prepared by a casting method incorporating 5-20 wt % Cs2.5H0.5PW12O40 NPs into the matrix. Films are flexible with tensile strengths between 28.55 and 32.15 MPa and exhibit broad biocidal activity against neutralophilic pathogens, including Gram-positive bacteria, Gram-negative bacteria, yeast, and filamentous fungi. The nano-antimicrobial Cs2.5H0.5PW12O40 functions as an efficient and self-controlled proton delivery agent that lowers the surface pH of the nanocomposites to the range 7.0 > pH ≥ 3.0. Nanocomposite films containing 20 wt % Cs2.5H0.5PW12O40 NPs presented a surface pH of 3.0 and highest antimicrobial activity. Using quantitative reverse transcription polymerase chain reaction, we demonstrated that the antimicrobial mechanism of the nanocomposites is acid-induced because of the transcriptional induction of glutamate-dependent acid resistance genes in Escherichia coli. Additionally, nanocomposite films do not damage skin according to an in vivo rabbit skin model with no derived edema or erythema. The wound care safety of this material is due to low release of heavy metal heteropolyanions ([PW12O40]3-), no nanoparticle leaching, and proton controlled release resulting in nonirritating acid levels for human skin models.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • strength
  • casting
  • leaching
  • tensile strength