Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ha, Yeon Hee

  • Google
  • 1
  • 6
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Design of New Isoindigo-Based Copolymer for Ambipolar Organic Field-Effect Transistors24citations

Places of action

Chart of shared publication
Noh, Yong-Young
1 / 3 shared
Gann, Eliot
1 / 22 shared
Kim, Yun-Hi
1 / 1 shared
Kwon, Soon-Ki
1 / 1 shared
Lee, Yun-Ji
1 / 1 shared
Shin, Eun-Sol
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Noh, Yong-Young
  • Gann, Eliot
  • Kim, Yun-Hi
  • Kwon, Soon-Ki
  • Lee, Yun-Ji
  • Shin, Eun-Sol
OrganizationsLocationPeople

article

Design of New Isoindigo-Based Copolymer for Ambipolar Organic Field-Effect Transistors

  • Noh, Yong-Young
  • Gann, Eliot
  • Kim, Yun-Hi
  • Kwon, Soon-Ki
  • Lee, Yun-Ji
  • Shin, Eun-Sol
  • Ha, Yeon Hee
Abstract

<p>We report the synthesis of a new conjugated polymer composed of isoindigo (IID) and 2,3-bis[thiophenyl-2-yl]thiophene acrylonitrile (CNTVT) subunits for high-performance n-type organic field-effect transistors (OFETs). To realize high electron mobility for the IID-based conjugated polymer, an electron-withdrawing nitrile group is incorporated into the vinylene unit, thereby shifting the energy of the lowest unoccupied molecular orbital for efficient electron injection from Au electrodes without disrupting the backbone planarity. Uniaxially aligned IID<sub>24</sub>-CNTVT-conjugated polymer films for efficient intramolecular charge transport are achieved by off-center spin-coating from preaggregated solutions. To obtain its stable preaggregation in solution, a binary solvent system (a mixture of good and bad solvents) chosen with the assistance of Hansen solubility parameter simulation is used. Through this process, highly aligned IID<sub>24</sub>-CNTVT films are obtained by off-center spin coating from a solvent mixture of 9:1 dichlorobenzene/2-methoxyethanol as the good and bad solvents, respectively. The properties of the aligned IID<sub>24</sub>-CNTVT films are characterized with various analytical techniques, including UV-visible absorption spectroscopy, angle-resolved near-edge X-ray absorption fine structure spectroscopy, and grazing-incidence wide-angle X-ray scattering. Top-gate/bottom-contact OFETs with IID<sub>24</sub>-CNTVT films aligned in the direction of charge transport exhibit a high-electron field-effect mobility of 0.83 ± 0.13 cm<sup>2</sup>/V·s.</p>

Topics
  • impedance spectroscopy
  • mobility
  • simulation
  • copolymer
  • wide-angle X-ray scattering
  • aligned
  • spin coating
  • near-edge X-ray absorption fine structure spectroscopy
  • nitrile