People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koganezawa, Tomoyuki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Epitaxial growth of copper phthalocyanine on a large single-grain of thin film alkyl perylene diimide
- 2024Ternary Polymer Solar Cells: Impact of Non-Fullerene Acceptors on Optical and Morphological Propertiescitations
- 2023Star-shape non-fullerene acceptor featuring an aza-triangulene core for organic solar cellscitations
- 2023Star-shape non-fullerene acceptor featuring an aza-triangulene core for organic solar cellscitations
- 2023Towards efficient NFA-based selective near-infrared organic photodetectors: impact of thermal annealing of polymer blendscitations
- 2022Improved ultraviolet stability of fullerene-based organic solar cells through light-induced enlargement and crystallization of fullerene domainscitations
- 2018Conjugated Polyelectrolyte Blend with Polyethyleneimine Ethoxylated for Thickness-Insensitive Electron Injection Layers in Organic Light-Emitting Devicescitations
- 2017The influence of branched alkyl side chains in A-D-A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cellscitations
- 2017The influence of branched alkyl side chains in A-D-A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Conjugated Polyelectrolyte Blend with Polyethyleneimine Ethoxylated for Thickness-Insensitive Electron Injection Layers in Organic Light-Emitting Devices
Abstract
<p>Electron injection layers (EILs) based on a simple polymer blend of polyethyleneimine ethoxylated (PEIE) and poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN-Br) can suppress the dependence of organic light-emitting device (OLED) performance on thickness variation compared with single PEIE or PFN-Br EILs. PEIE and PFN-Br were compatible with each other and PFN-Br uniformly mixed in the PEIE matrix. PFN-Br in PEIE formed more fluorene-fluorene pairs than PFN-Br alone. In addition, PEIE:PFN-Br blends reduced the work function (WF) substantially compared with single PEIE or PFN-Br polymer. PEIE:PFN-Br blends were applied to EILs in fluorescent polymer-based OLEDs. Optimized PEIE:PFN-Br blend EIL-based devices presented lower driving voltages and smaller dependences of device performance on EIL thickness than single PEIE or PFN-Br-based devices. These improvements were attributed to electron-transporting fluorene moieties, increased fluorene-fluorene pairs working as channels of electron transport, and the large WF reduction effect of PEIE:PFN-Br blends.</p>