People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sernicola, Giorgio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022In-situ diffraction based observations of slip near phase boundaries in titanium through micropillar compressioncitations
- 2018"Brick-and-Mortar" Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Compositescitations
- 2017In situ stable crack growth at the micron scalecitations
- 2016Light and Strong SiC Networkscitations
- 2016Light and Strong SiC Networkscitations
Places of action
Organizations | Location | People |
---|
article
"Brick-and-Mortar" Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites
Abstract
<p>The fiber-matrix interface plays a critical role in determining composite mechanical properties. While a strong interface tends to provide high strength, a weak interface enables extensive debonding, leading to a high degree of energy absorption. Balancing these conflicting requirements by engineering composite interfaces to improve strength and toughness simultaneously still remains a great challenge. Here, a nanostructured fiber coating was realized to manifest the critical characteristics of natural nacre, at a reduced length scale, consistent with the surface curvature of fibers. The new interphase contains a high proportion (similar to 90 wt %) of well aligned inorganic platelets embedded in a polymer; the window of suitable platelet dimensions is very narrow, with an optimized platelet width and thickness of about 130 and 13 nm, respectively. An anisotropic, nanostructured coating was uniformly and conformally deposited onto a large number of 9 mu m diameter glass fibers, simultaneously, using self-limiting layer-by-layer assembly (LbL); this parallel approach demonstrates a promising strategy to exploit LbL methods at scale. The resulting nanocomposite interphase, primarily loaded in shear, provides new mechanisms for stress dissipation and plastic deformation. The energy released by fiber breakage in tension appear to spread and dissipate within the nanostructured interphase, accompanied by stable fiber slippage, while the interfacial strength was improved up to 30%.</p>