People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bastos Da Silva Fanta, Alice
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Thermal stability of hierarchical microstructural features in additively manufactured stainless steelcitations
- 2023Study in Phase-Transformation Temperature in Nitinol by In Situ TEM Heating
- 2023The effect of cyclic heat treatment on microstructure evolution during Plasma Arc Additive Manufacturing employing an SEM in-situ heating study
- 2023Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Study
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2022Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scatteringcitations
- 2022Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scatteringcitations
- 2022Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scatteringcitations
- 2022High resolution crystal orientation mapping of ultrathin films in SEM and TEMcitations
- 2021Recent developments for the characterization of crystals and defects at the nanoscale using on-axis TKD in SEM
- 2021Challenges and perspectives of Transmission Kikuchi Diffraction for nanocrystalline materials characterization
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO2 Substratescitations
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO 2 Substratescitations
- 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detectioncitations
- 2018Optimal microstructural design for high thermal stability of pure FCC metals based on studying effect of twin boundaries character and network of grain boundariescitations
- 2017Influence of Ti and Cr Adhesion Layers on Ultrathin Au Filmscitations
- 2017Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversioncitations
- 2017Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structurescitations
- 2017Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structurescitations
- 2013Partial transformation of austenite in Al-Mn-Si TRIP steel upon tensile straining: an in situ EBSD studycitations
- 20093-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM
- 2008Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni filmscitations
- 2007Orientation microscopy on nanostructured electrodeposited NiCo-Films
Places of action
Organizations | Location | People |
---|
article
Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films
Abstract
Efficient adhesion of gold thin films on dielectric or semiconductor substrates is essential in applications and research within plasmonics, metamaterials, 2D materials, and nanoelectronics. As a consequence of the relentless downscaling in nanoscience and technology, the thicknesses of adhesion layer and overlayer have reached tens of nanometers, and it is unclear if our current understanding is sufficient. In this report, we investigated how Cr and Ti adhesion layers influence the nanostructure of 2-20 nm thin Au films by means of high-resolution electron microscopy, complemented with atomic force microscopy and X-ray photoelectron spectroscopy. Pure Au films were compared to Ti/Au and Cr/Au bilayer systems. Both Ti and Cr had a striking impact on grain size and crystal orientation of the Au overlayer, which we interpret as the adhesion layer-enhanced wetting of Au and the formation of chemical bonds between the layers. Ti formed a uniform layer under the Au overlayer. Cr interdiffused with the Au layer forming a Cr-Au alloy. The crystal orientation of the Au layers was mainly [111] for all thin-film systems. The results showed that both adhesion layers were partially oxidized, and oxidation sources were scrutinized and found. A difference in bilayer electrical resistivity between Ti/Au and Cr/Au systems was measured and compared. On the basis of these results, a revised and more detailed adhesion layer model for both Ti/Au and Cr/Au systems was proposed. Finally, the implications of the results were analyzed, and recommendations for the selection of adhesion layers for nano-optics and nanoelectronics applications are presented.