Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Panigrahy, Bharati

  • Google
  • 1
  • 4
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Competing Roles of Substrate Composition, Microstructure, and Sustained Strontium Release in Directing Osteogenic Differentiation of hMSCs36citations

Places of action

Chart of shared publication
Sarma, D. D.
1 / 9 shared
Thrivikraman, Greeshma
1 / 1 shared
Basu, Bikramjit
1 / 26 shared
Boda, Sunil Kumar
1 / 3 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Sarma, D. D.
  • Thrivikraman, Greeshma
  • Basu, Bikramjit
  • Boda, Sunil Kumar
OrganizationsLocationPeople

article

Competing Roles of Substrate Composition, Microstructure, and Sustained Strontium Release in Directing Osteogenic Differentiation of hMSCs

  • Sarma, D. D.
  • Thrivikraman, Greeshma
  • Panigrahy, Bharati
  • Basu, Bikramjit
  • Boda, Sunil Kumar
Abstract

<p>Strontium releasing bioactive ceramics constitute an important class of biomaterials for osteoporosis treatment. In the present study, we evaluated the synthesis, phase assemblage, and magnetic properties of strontium hexaferrite, SrFe<sub>12</sub>O<sub>19</sub>, (SrFe) nanoparticles. On the biocompatibility front, the size- and dose-dependent cytotoxicity of SrFe against human mesenchymal stem cells (hMSCs) were investigated. After establishing their non-toxic nature, we used the strontium hexaferrite nanoparticles (SrFeNPs) in varying amount (x = 0, 10, and 20 wt %) to consolidate bioactive composites with hydroxyapatite (HA) by multi-stage spark plasma sintering (SPS). Rietveld refinement of these spark plasma sintered composites revealed a near complete decomposition of SrFe<sub>12</sub>O<sub>19</sub> to magnetite (Fe<sub>3</sub>O<sub>4</sub>) along with a marked increase in the unit cell volume of HA, commensurate with strontium-doped HA. The cytocompatibility of SrHA-Fe composites with hMSCs was assessed using qualitative and quantitative morphological analysis along with phenotypic and genotypic expression for stem cell differentiation. A marked decrease in the stemness of hMSCs, indicated by reduced vimentin expression and acquisition of osteogenic phenotype, evinced by alkaline phosphatase (ALP) and collagen deposition was recorded on SrHA-Fe composites in osteoinductive culture. A significant upregulation of osteogenic marker genes (Runx2, ALP and OPN) was detected in case of the SrHA-Fe composites, whereas OCN and Col IA expression were similarly high for baseline HA. However, matrix mineralization was elevated on SrHA-Fe composites in commensurate with the release of Sr<sup>2+</sup> and Fe<sup>2+</sup>. Summarizing, the current work is the first report of strontium hexaferrite as a non-toxic nanobiomaterial. Also, SrHA-based iron oxide composites can potentially better facilitate bone formation, when compared to pristine HA.</p>

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • microstructure
  • phase
  • Strontium
  • composite
  • iron
  • ceramic
  • biomaterials
  • decomposition
  • sintering
  • biocompatibility