Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bolhuis, Thijs

  • Google
  • 3
  • 8
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Effect of orbital hybridization on spin-polarized tunneling across Co/C60 interfaces18citations
  • 2015Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers15citations
  • 2013Tunneling anisotropic magnetoresistance in Co/AIOx/Al tunnel junctions with fcc Co (111) electrodes24citations

Places of action

Chart of shared publication
Sanderink, Johnny G. M.
2 / 3 shared
Strambini, Elia
1 / 4 shared
Jong, Michel P. De
2 / 2 shared
Wang, Kai
3 / 12 shared
Jong, Machiel Pieter De
1 / 4 shared
Brinks, Peter
1 / 1 shared
Sanderink, Johannes G. M.
1 / 2 shared
Tran, T. Lan Ahn
1 / 5 shared
Chart of publication period
2016
2015
2013

Co-Authors (by relevance)

  • Sanderink, Johnny G. M.
  • Strambini, Elia
  • Jong, Michel P. De
  • Wang, Kai
  • Jong, Machiel Pieter De
  • Brinks, Peter
  • Sanderink, Johannes G. M.
  • Tran, T. Lan Ahn
OrganizationsLocationPeople

article

Effect of orbital hybridization on spin-polarized tunneling across Co/C60 interfaces

  • Sanderink, Johnny G. M.
  • Strambini, Elia
  • Jong, Michel P. De
  • Bolhuis, Thijs
  • Wang, Kai
Abstract

The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we show that this hybridization affects spin transport across the interface significantly. We report spin-dependent electronic transport measurements for tunnel junctions comprising C60 molecular thin films grown on top of face-centered-cubic (fcc) epitaxial Co electrodes, an lOx tunnel barrier, and an Al counter electrode. Since only one ferromagnetic electrode (Co) is present, spin-polarized transport is due to tunneling anisotropic magnetoresistance(TAMR). An in-plane TAMR ratio of approximately 0.7% has been measured at 5 K under application of a magnetic field of 800 mT. The magnetic switching behavior shows some remarkable features, which are attributed to the rotation of interfacial magnetic moments. This behavior can be ascribed to the magnetic coupling between the Co thin films and the newly formed Co/C60 hybridized interfacial states. Using the Tedrow-Meservey technique, the tunnel spin polarization of the Co/C60 interface was found to be 43%.

Topics
  • density
  • impedance spectroscopy
  • surface
  • thin film
  • semiconductor
  • anisotropic
  • spin polarization