People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tougaard, Sven Mosbæk
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2022QUEELScitations
- 2020Optical properties of molybdenum in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopycitations
- 2020Universal inelastic electron scattering cross-section including extrinsic and intrinsic excitations in XPScitations
- 2017Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultravioletcitations
- 2016Determination of electronic properties of nanostructures using reflection electron energy loss spectroscopycitations
- 2016Quantitative spectromicroscopy from inelastically scattered photoelectrons in the hard X-ray rangecitations
- 2016Composition dependence of dielectric and optical properties of Hf-Zr-silicate thin films grown on Si(100) by atomic layer depositioncitations
- 2016Band-Gap Widening at the Cu(In,Ga)(S,Se)2 Surface:A Novel Determination Approach Using Reflection Electron Energy Loss Spectroscopycitations
- 2016Band-Gap Widening at the Cu(In,Ga)(S,Se)2 Surfacecitations
- 2016Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin filmscitations
- 2015Effects of cation compositions on the electronic properties and optical dispersion of indium zinc tin oxide thin films by electron spectroscopycitations
- 2014Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopycitations
- 2013Factor analysis and advanced inelastic background analysis in XPScitations
- 2013Surface excitation parameter for allotropic forms of carboncitations
- 2013Effects of gas environment on electronic and optical properties of amorphous indium zinc tin oxide thin filmscitations
- 2011Dielectric response functions of the (0001̄), (101̄3) GaN single crystalline and disordered surfaces studied by reflection electron energy loss spectroscopycitations
- 2009Dielectric and optical properties of Zr silicate thin films grown on Si(100) by atomic layer depositioncitations
- 2008Test of validity of the V-type approach for electron trajectories in reflection electron energy loss spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Band-Gap Widening at the Cu(In,Ga)(S,Se)2 Surface
Abstract
<p>Using reflection electron energy loss spectroscopy (REELS), we have investigated the optical properties at the surface of a chalcopyrite-based Cu(In,Ga)(S,Se)<sub>2</sub> (CIGSSe) thin-film solar cell absorber, as well as an indium sulfide (In<sub>x</sub>S<sub>y</sub>) buffer layer before and after annealing. By fitting the characteristic inelastic scattering cross-section λK(E) to cross sections evaluated by the QUEELS-(k,ω)-REELS software package, we determine the surface dielectric function and optical properties of these samples. A comparison of the optical values at the surface of the In<sub>x</sub>S<sub>y</sub> film with bulk ellipsometry measurements indicates a good agreement between bulk- and surface-related optical properties. In contrast, the properties of the CIGSSe surface differ significantly from the bulk. In particular, a larger (surface) band gap than for bulk-sensitive measurements is observed, providing a complementary and independent confirmation of earlier photoelectron spectroscopy results. Finally, we derive the inelastic mean free path λ for electrons in In<sub>x</sub>S<sub>y</sub>, annealed In<sub>x</sub>S<sub>y</sub>, and CIGSSe at a kinetic energy of 1000 eV.</p>