People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carlos, Emanuel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Printed Memristors: An Overview of Ink, Materials, Deposition Techniques, and Applicationscitations
- 2024Inkjet printed IGZO memristors with volatile and non-volatile switchingcitations
- 2022Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductorscitations
- 2022Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductorscitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2020Application of ultrasonic sprayed zirconium oxide dielectric in zinc tin oxide-based thin film transistorcitations
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 20202D Resistive Switching Based on Amorphous Zinc–Tin Oxide Schottky Diodescitations
- 2019Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin filmscitations
- 2019Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin filmscitations
- 2019Tailoring IGZO composition for enhanced fully solution-based thin film transistorscitations
- 2016UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistorscitations
- 2016FUV-assisted low temperature AlOx solution based dielectric for oxide TFTs
Places of action
Organizations | Location | People |
---|
article
UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistors
Abstract
<p>Solution processing of amorphous metal oxides has lately been used as an option to implement in flexible electronics, allowing a reduction of the associated costs and high performance. However, the research has focused more on the semiconductor layer rather than on the insulator layer, which is related to the stability and performance of the devices. This work aims to evaluate amorphous aluminum oxide thin films produced by combustion synthesis and the influence of far-ultraviolet (FUV) irradiation on the properties of the insulator on thin-film transistors (TFTs) using different semiconductors, in order to have compatibility with flexible substrates. An optimized dielectric layer was obtained for an annealing of 30 min assisted by FUV exposure. These thin films were applied in gallium-indium-zinc oxide TFTs as dielectrics showing the best results for TFTs annealed at 180 °C with FUV irradiation: good reproducibility with a subthreshold slope of 0.11 ± 0.01 V dec <sup>-1</sup> and a turn-on voltage of -0.12 ± 0.05 V, low operating voltage, and good stability over time. Finally, the dielectric layer was applied in solution-processed indium oxide (In<sub>2</sub>O<sub>3</sub>) TFTs at low temperature, 180 °C, with a short processing time being compatible with flexible electronic applications.</p>