People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Jian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Rear Surface Passivation for Ink-Based, Submicron CuIn(S, Se)2 Solar Cellscitations
- 2024Electrically Programmed Doping Gradients Optimize the Thermoelectric Power Factor of a Conjugated Polymercitations
- 2024Electrically Programmed Doping Gradients Optimize the Thermoelectric Power Factor of a Conjugated Polymercitations
- 2022Charge transport in doped conjugated polymers for organic thermoelectricscitations
- 2022A method for identifying the cause of inefficient salt-doping in organic semiconductorscitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2021Modeling the Effect of Prestressing on the Ultimate Behavior of Deep-to-Slender Concrete Beams ; Belgium
- 2020N-type organic thermoelectrics:demonstration of ZT > 0.3citations
- 2020Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier-Carrier Interactionscitations
- 2020Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier-Carrier Interactionscitations
- 2020Insights into the structure−activity relationships in metal−Organic framework-supported nickel catalysts for ethylene hydrogenationcitations
- 2020N-type organic thermoelectricscitations
- 2019Two-Parameter Kinematic Approach for complete Shear Behaviour of Deep FRC Beamscitations
- 2019Structural properties of protective diamond-like-carbon thin films grown on multilayer graphenecitations
- 2018Advantages of Yolk Shell Catalysts for the DRM: A Comparison of Ni/ZnO@SiO2 vs. Ni/CeO2 and Ni/Al2O3.citations
- 2018Beyond the Active Sitecitations
- 2017N-Type Organic Thermoelectrics:Improved Power Factor by Tailoring Host-Dopant Miscibilitycitations
- 2017N-Type Organic Thermoelectricscitations
- 2016Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Dopingcitations
- 2016Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Dopingcitations
- 2009Enhanced infrared emission from colloidal HgTe nanocrystal quantum dots on silicon-on-insulator photonic crystalscitations
Places of action
Organizations | Location | People |
---|
article
Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Doping
Abstract
<p>One of the most commonly used cathode interlayers for increasing the efficiency of electron injection/extraction in organic electronic devices is an ultrathin layer of LiF. Our capacitance measurements and electrical conductivity E analysis show that thin films of fullerene derivatives and their mixtures with polymers are unintentionally doped upon deposition of LiF. The level of doping depends on the chemical, structure of the fullerene derivatives. The doping effect on polymer/fullerene mixtures is significant only for blends in which the fullerene content is greater than the polymer content by weight. Our finding has profound implications for the development and characterization of organic photovoltaic devices, including a negative impact of doping on the stability of the device and erroneous estimations of properties such as charge carrier mobility and the dielectric constant.</p>