Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Coad, Bryan R.

  • Google
  • 3
  • 8
  • 73

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Hyperthermal intact molecular ions play key role in retention of ATRP surface initiation capability of plasma polymer films from ethyl alpha-bromoisobutyrate17citations
  • 2015Surface coatings with covalently attached caspofungin are effective in eliminating fungal pathogens33citations
  • 2015Comparison of plasma polymerization under collisional and collision-less pressure regimes23citations

Places of action

Chart of shared publication
Michelmore, Andrew
2 / 9 shared
Griesser, Hans J.
3 / 12 shared
Short, Robert D.
2 / 8 shared
Saboohi, Solmaz
2 / 2 shared
Lamont-Friedrich, Stephanie J.
1 / 1 shared
Jasieniak, Marek
2 / 4 shared
Gwynne, Lauren
1 / 1 shared
Griesser, Stefani
1 / 2 shared
Chart of publication period
2016
2015

Co-Authors (by relevance)

  • Michelmore, Andrew
  • Griesser, Hans J.
  • Short, Robert D.
  • Saboohi, Solmaz
  • Lamont-Friedrich, Stephanie J.
  • Jasieniak, Marek
  • Gwynne, Lauren
  • Griesser, Stefani
OrganizationsLocationPeople

article

Hyperthermal intact molecular ions play key role in retention of ATRP surface initiation capability of plasma polymer films from ethyl alpha-bromoisobutyrate

  • Coad, Bryan R.
  • Michelmore, Andrew
  • Griesser, Hans J.
  • Short, Robert D.
  • Saboohi, Solmaz
Abstract

<p>We report a systematic study of the plasma polymerization of ethyl alpha-bromoisobutyrate (EBIB) to produce thin film coatings capable of serving as ATRP initiation surfaces, for which they must contain alpha-bromoisobutyryl functional groups. In the deposition of polymeric coatings by plasma polymerization there generally occurs considerable fragmentation of precursor ("monomer") molecules. in the plasma; and the retention of larger structural elements is challenging, particularly when they are inherently chemically labile. Empirical principles such as low plasma power and low pressure are usually utilized. However, we show that the alpha-bromoisobutyryl structural moiety is labile in a plasma gas phase and in low pressure plasma conditions, below the collisional threshold, there is little retention. At higher pressure, in contrast, fragmentation of this structural motif appears to be reduced substantially, and coatings useful for ATRP initiation were obtained. Mass spectrometry analysis of the composition of the plasma phase revealed that the desired structural moiety can be retained through the plasma, if the plasma conditions are steered toward ions of the precursor molecule. 'Whereas at low pressure the plasma polymer assembles mainly from various neutral (radical) fragments, at higher pressure the deposition occurs from hyperthermal ions, among which the protonated intact molecular ion is the most abundant. At higher pressure, a substantial population of ions has low kinetic energy, leading to "soft landing" and thus less fragmentation. This study demonstrates that relatively complex structural motifs in precursor molecules can be retained in plasma polymerization if the chemical and physical processes occurring in the plasma phase are elucidated and controlled such that desirable larger structural elements play a key role in the film deposition.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • polymer
  • thin film
  • laser emission spectroscopy
  • mass spectrometry
  • gas phase
  • spectrometry