People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ebendorff-Heidepriem, Heike
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Controlled formation of gold nanoparticles with tunable plasmonic properties in tellurite glasscitations
- 2022Impact of rare earth doping on the luminescence of lanthanum aluminum silicate glasses for radiation sensing
- 2021Extruded suspended core fibers from lanthanum-aluminum-silicate glass
- 2019Micron scale thermometry using lanthanide doped tellurite glass
- 2019Effects of pressurization and surface tension on drawing Ge-Sb-Se chalcogenide glass suspended-core fibercitations
- 2018Stack-and-draw microstructured optical fiber with Ge28Sb12Se60 chalcogenide glasscitations
- 2017Extrusion of fluid cylinders of arbitrary shape with surface tension and gravitycitations
- 2016Microstructured Optical Fiber-based Biosensorscitations
- 2011Midinfrared optical rogue waves in soft glass photonic crystal fibercitations
- 2011Energy level decay and excited state absorption processes in erbium-doped tellurite glasscitations
- 2006Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 µm - 5 µmcitations
Places of action
Organizations | Location | People |
---|
article
Microstructured Optical Fiber-based Biosensors
Abstract
<p>Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn<sup>2+</sup> sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn<sup>2+</sup> in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.</p>