People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hejazi, Vahid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Microwave Heating of Functionalized Graphene Nanoribbons in Thermoset Polymers for Wellbore Reinforcement
Abstract
Here, we introduce a systematic strategy to prepare composite materials for wellbore reinforcement using graphene nanoribbons (GNRs) in a thermoset polymer irradiated by microwaves. We show that microwave absorption by GNRs functionalized with poly(propylene oxide) (PPO-GNRs) cured the composite by reaching 200 °C under 30 W of microwave power. Nanoscale PPO-GNRs diffuse deep inside porous sandstone and dramatically enhance the mechanics of the entire structure via effective reinforcement. The bulk and the local mechanical properties measured by compression and nanoindentation mechanical tests, respectively, reveal that microwave heating of PPO-GNRs and direct polymeric curing are major reasons for this significant reinforcement effect.