People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
García Lastra, Juan Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytescitations
- 2022Dual Role of Mo 6 S 8 in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2021Computational design of ductile magnesium alloy anodes for magnesium ion batteriescitations
- 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteriescitations
- 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteriescitations
- 2018Comparative DFT+U and HSE Study of the Oxygen Evolution Electrocatalysis on Perovskite Oxidescitations
- 2018Machine learning-based screening of complex molecules for polymer solar cellscitations
- 2016A Density Functional Theory Study of the Ionic and Electronic Transport Mechanisms in LiFeBO3 Battery Electrodescitations
- 2016A Density Functional Theory Study of the Ionic and Electronic Transport Mechanisms in LiFeBO 3 Battery Electrodescitations
- 2015Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO2 Interface: A Synergetic Computational and Experimental Studycitations
- 2015Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO 2 Interface: A Synergetic Computational and Experimental Studycitations
- 2013Stability and bandgaps of layered perovskites for one- and two-photon water splittingcitations
- 2012Understanding Periodic Dislocations in 2D Supramolecular Crystals: The PFP/Ag(111) Interfacecitations
- 2010Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculationscitations
- 2010Graphene on metals: A van der Waals density functional studycitations
Places of action
Organizations | Location | People |
---|
article
Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO2 Interface: A Synergetic Computational and Experimental Study
Abstract
Antimony doped tin dioxide (ATO) is considered a promising support material for Pt-based fuel cell cathodes, displaying enhanced stability over carbon-based supports. In this work, the effect of Sb segregation on the conductance and catalytic activity at Pt/ATO interface was investigated through a combined computational and experimental study. It was found that Sb-dopant atoms prefer to segregate toward the ATO/Pt interface. The deposited Pt catalysts, interestingly, not only promote Sb segregation, but also suppress the occurrence of Sb3+ species, a charge carrier neutralizer at the interface. The conductivity of ATO was found to increase, to a magnitude close to that of activated carbon, with an increment of Sb concentration before reaching a saturation point around 10%, and then decrease, indicating that Sb enrichment at the ATO surface may not always favor an increment of the electric current. In addition, the calculation results show that the presence of Sb dopants in ATO has little effect on the catalytic activity of deposited three-layer Pt toward the oxygen reduction reaction, although subsequent alloying of Pt and Sb could lower the corresponding catalytic activity. These findings help to support future applications of ATO/Pt-based materials as possible cathodes for PEMFC applications with enhanced durability under practical applications.