Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luca, Francois De

  • Google
  • 3
  • 10
  • 135

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Increasing carbon fiber composite strength with a nanostructured "brick-and-mortar" interphase45citations
  • 2018"Brick-and-Mortar" Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites60citations
  • 2015Nacre-nanomimetics30citations

Places of action

Chart of shared publication
Shaffer, Milo S. P.
3 / 29 shared
Bismarck, Alexander
3 / 142 shared
Clancy, Adam J.
1 / 3 shared
Carrero, Noelia R.
1 / 1 shared
Anthony, David B.
1 / 7 shared
Luca, Hugo G. De
1 / 3 shared
Sernicola, Giorgio
1 / 5 shared
Birkbeck, John
1 / 3 shared
Blaker, Jonny J.
1 / 15 shared
Menzel, Robert
1 / 3 shared
Chart of publication period
2018
2015

Co-Authors (by relevance)

  • Shaffer, Milo S. P.
  • Bismarck, Alexander
  • Clancy, Adam J.
  • Carrero, Noelia R.
  • Anthony, David B.
  • Luca, Hugo G. De
  • Sernicola, Giorgio
  • Birkbeck, John
  • Blaker, Jonny J.
  • Menzel, Robert
OrganizationsLocationPeople

article

Nacre-nanomimetics

  • Shaffer, Milo S. P.
  • Bismarck, Alexander
  • Birkbeck, John
  • Blaker, Jonny J.
  • Menzel, Robert
  • Luca, Francois De
Abstract

<p>The bricks and mortar in the classic structure of nacre have characteristic geometry, aspect ratios and relative proportions; these key parameters can be retained while scaling down the absolute length scale by more than 1 order of magnitude. The results shed light on fundamental scaling behavior and provide new opportunities for high performance, yet ductile, lightweight nanocomposites. Reproducing the toughening mechanisms of nacre at smaller length scales allows a greater volume of interface per unit volume while simultaneously increasing the intrinsic properties of the inorganic constituents. Layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS) polyelectrolyte and well-defined [Mg<sub>2</sub>Al(OH)<sub>6</sub>]CO<sub>3</sub>.nH<sub>2</sub>O layered double hydroxide (LDH) platelets produces a dense, oriented, high inorganic content (∼90 wt %) nanostructure resembling natural nacre, but at a shorter length scale. The smaller building blocks enable the (self-) assembly of a higher quality nanostructure than conventional mimics, leading to improved mechanical properties, matching those of natural nacre, while allowing for substantial plastic deformation. Both strain hardening and crack deflection mechanisms were observed in situ by scanning electron microscopy (SEM) during nanoindentation. The best properties emerge from an ordered nanostructure, generated using regular platelets, with narrow size dispersion.</p>

Topics
  • nanocomposite
  • dispersion
  • polymer
  • scanning electron microscopy
  • crack
  • layered
  • Sodium
  • nanoindentation