People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shahbazi, Mohammad-Ali
University Medical Center Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Designing of a Multifunctional 3D-Printed Biomimetic Theragenerative Aerogel Scaffold via Mussel-Inspired Chemistrycitations
- 2023Dermal Wound Healingcitations
- 2023Nanoparticles-based phototherapy systems for cancer treatmentcitations
- 2023Nanoparticles-based phototherapy systems for cancer treatment:Current status and clinical potentialcitations
- 2023Effect of poly (lactic-co-glycolic acid) polymer nanoparticles loaded with vancomycin against Staphylococcus aureus biofilmcitations
- 2023Injectable Nanocomposite Hydrogels of Gelatin-Hyaluronic Acid Reinforced with Hybrid Lysozyme Nanofibrils-Gold Nanoparticles for the Regeneration of Damaged Myocardiumcitations
- 2021Electroconductive multi-functional polypyrrole composites for biomedical applicationscitations
- 2020Directional Freeze-Castingcitations
- 2020Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticlescitations
- 2019Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approachcitations
- 2019Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systemscitations
- 2018Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regenerationcitations
- 2018Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regenerationcitations
- 2017A Multifunctional Nanocomplex for Enhanced Cell Uptake, Endosomal Escape and Improved Cancer Therapeutic Effectcitations
- 2017Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticlescitations
- 2016Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal modelcitations
- 2015Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cellscitations
- 2015Microfluidic Nanoprecipitation of a Stimuli Responsive Hybrid Nanocomposite for Antitumoral Applications
Places of action
Organizations | Location | People |
---|
article
Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells
Abstract
Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-beta-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.