People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gu, Sai
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Investigating New Routes for Biomass Upgrading: “H2-Free” Hydrodeoxygenation Using Ni-Based Catalystscitations
- 2019Two-dimensional mathematical model of an air-cathode microbial fuel cell with graphite fiber brush anodecitations
- 2017Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part A: Influence of kinematic spray parameters on thickness, porosity, residual stresses and microhardnesscitations
- 2017Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part B: Influence of kinematic spray parameters on microstructure, phase composition and decarburization of the coatingscitations
- 2016Semipermeable elastic microcapsules for gas capture and sensingcitations
- 2015Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devicescitations
- 2014Micro-scale CFD study about the influence of operative parameters on physical mass transfer within structured packing elementscitations
Places of action
Organizations | Location | People |
---|
article
Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices
Abstract
<p>Biodegradable poly(dl-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) microparticles with tunable size, shape, internal structure and surface morphology were produced by counter-current flow focusing in axisymmetric (3D) glass capillary devices. The dispersed phase was composed of 0.5-2 wt % polymer solution in a volatile organic solvent (ethyl acetate or dichloromethane) and the continuous phase was 5 wt % aqueous poly(vinyl alcohol) solution. The droplets with a coefficient of variation in dripping regime below 2.5% were evaporated to form polymeric particles with uniform sizes ranging between 4 and 30 μm. The particle microstructure and surface roughness were modified by adding nanofiller (montmorillonite nanoclay) or porogen (2-methylpentane) in the dispersed phase to form less porous polymer matrix or porous particles with golf-ball-like dimpled surface, respectively. The presence of 2-4 wt % nanoclay in the host polymer significantly reduced the release rate of paracetamol and prevented the early burst release, as a result of reduced polymer porosity and tortuous path for the diffusing drug molecules. Numerical modeling results using the volume of fluid-continuum surface force model agreed well with experimental behavior and revealed trapping of nanoclay particles in the dispersed phase upstream of the orifice at low dispersed phase flow rates and for 4 wt % nanoclay content, due to vortex formation. Janus PLA/PCL (polycaprolactone) particles were produced by solvent evaporation-induced phase separation within organic phase droplets containing 3% (v/v) PLA/PCL (30/70 or 70/30) mixture in dichloromethane. A strong preferential adsorption of Rhodamine 6G dye onto PLA was utilized to identify PLA portions of the Janus particles by confocal laser scanning microscopy (CLSM). Uniform hemispherical PCL particles were produced by dissolution of PLA domes with acetone.</p>