People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Voigt, Axel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Controlling magnetic anisotropy in amplitude expansion of phase field crystal model
- 2021Doubly degenerate diffuse interface models of anisotropic surface diffusioncitations
- 2021Doubly degenerate diffuse interface models of surface diffusioncitations
- 2020Hyperuniform monocrystalline structures by spinodal solid-state dewettingcitations
- 2020Self-assembly of nanovoids in Si microcrystals epitaxially grown on deeply patterned substratescitations
- 2020Hyperuniform Monocrystalline Structures by Spinodal Solid-State Dewettingcitations
- 2019CONVEXITY SPLITTING IN A PHASE FIELD MODEL FOR SURFACE DIFFUSION
- 2019Deterministic 3D self-assembly of Si through a rim-less and topology-preserving dewetting regime
- 2019Closing the gap between atomic-scale lattice deformations and continuum elasticitycitations
- 2019Deterministic three-dimensional self-assembly of Si through a rimless and topology-preserving dewetting regimecitations
- 2018Morphological evolution of Ge/Si nano-strips driven by Rayleigh-like instabilitycitations
- 2017Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal modelcitations
- 2017Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitecturescitations
- 2017Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended filmcitations
- 2016Thin-film growth dynamics with shadowing effects by a phase-field approachcitations
- 2016Deformation analysis of polymer foams under compression load using in situ computed tomography and finite element simulation methods
- 2015Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Sicitations
- 2015Faceting of equilibrium and metastable nanostructures: a Phase-Field model of surface diffusion tackling realistic shapescitations
- 2004Finite element method for epitaxial growth with attachment–detachment kineticscitations
- 2003Element method for epitaxial growth with attachment-detachment kinetics
Places of action
Organizations | Location | People |
---|
article
Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Si
Abstract
The move from dimensional to functional scaling in microelectronics has led to renewed interest toward integration of Ge on Si. In this work, simulation-driven experiments leading to high-quality suspended Ge films on Si pillars are reported. Starting from an array of micrometric Ge crystals, the film is obtained by exploiting their temperature-driven coalescence across nanometric gaps. The merging process is simulated by means of a suitable surface-diffusion model within a phase-field approach. The successful comparison between experimental and simulated data demonstrates that the morphological evolution is driven purely by the lowering of surface-curvature gradients. This allows for fine control over the final morphology to be attained. At fixed annealing time and temperature, perfectly merged films are obtained from Ge crystals grown at low temperature (450 degrees C), whereas some void regions still persist for crystals grown at higher temperature (500 degrees C) due to their different initial morphology. The latter condition, however, looks very promising for possible applications. Indeed, scanning tunneling electron microscopy and high-resolution transmission electron microscopy analyses show that, at least during the first stages of merging, the developing film is free from threading dislocations. The present findings, thus, introduce a promising path to integrate Ge layers on Si with a low dislocation density.