People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Capellini, Giovanni
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Selective Growth of GaP Crystals on CMOS-Compatible Si Nanotip Wafers by Gas Source Molecular Beam Epitaxycitations
- 2024High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THzcitations
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THzcitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2023Terahertz subwavelength sensing with bio-functionalized germanium fano-resonators
- 2023Isothermal Heteroepitaxy of Ge1-xSnx Structures for Electronic and Photonic Applicationscitations
- 2023Isothermal Heteroepitaxy of Ge 1- x Sn x Structures for Electronic and Photonic Applicationscitations
- 2022Terahertz subwavelength sensing with bio-functionalized germanium fano-resonatorscitations
- 2022Biocompatibility and antibacterial properties of TiCu(Ag) thin films produced by physical vapor deposition magnetron sputteringcitations
- 2022Biocompatibility and antibacterial properties of TiCu(Ag) thin films produced by physical vapor deposition magnetron sputteringcitations
- 2018Advanced GeSn/SiGeSn Group IV Heterostructure Laserscitations
- 2018Advanced GeSn/SiGeSn Group IV Heterostructure Laserscitations
- 2018Morphological evolution of Ge/Si nano-strips driven by Rayleigh-like instabilitycitations
- 2018Antiphase boundaries in InGaP/SiGe/Si : structural and optical properties
- 2018Photoluminescence from GeSn nano-heterostructurescitations
- 2017Fully coherent Ge islands growth on Si nano-pillars by selective epitaxycitations
- 2017Strain relaxation in epitaxial GaAs/Si (0 0 1) nanostructurescitations
- 2017Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPEcitations
- 2016Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillarscitations
- 2015Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Sicitations
- 2015CMOS-compatible optical switching concept based on strain-induced refractive-index tuning
- 2007GeSi Intermixing in Ge Nanostructures on Si(111): An XAFS versus STM Studycitations
Places of action
Organizations | Location | People |
---|
article
Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Si
Abstract
The move from dimensional to functional scaling in microelectronics has led to renewed interest toward integration of Ge on Si. In this work, simulation-driven experiments leading to high-quality suspended Ge films on Si pillars are reported. Starting from an array of micrometric Ge crystals, the film is obtained by exploiting their temperature-driven coalescence across nanometric gaps. The merging process is simulated by means of a suitable surface-diffusion model within a phase-field approach. The successful comparison between experimental and simulated data demonstrates that the morphological evolution is driven purely by the lowering of surface-curvature gradients. This allows for fine control over the final morphology to be attained. At fixed annealing time and temperature, perfectly merged films are obtained from Ge crystals grown at low temperature (450 degrees C), whereas some void regions still persist for crystals grown at higher temperature (500 degrees C) due to their different initial morphology. The latter condition, however, looks very promising for possible applications. Indeed, scanning tunneling electron microscopy and high-resolution transmission electron microscopy analyses show that, at least during the first stages of merging, the developing film is free from threading dislocations. The present findings, thus, introduce a promising path to integrate Ge layers on Si with a low dislocation density.