People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Montalenti, Francesco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Polytypic quantum wells in Si and Ge: impact of 2D hexagonal inclusions on electronic band structurecitations
- 2024Extreme time extrapolation capabilities and thermodynamic consistency of physics-inspired Neural Networks for the 3D microstructure evolution of materials
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2022Stress-Induced Acceleration and Ordering in Solid-State Dewettingcitations
- 2020Self-assembly of nanovoids in Si microcrystals epitaxially grown on deeply patterned substratescitations
- 2020Molecular dynamics simulations of extended defects and their evolution in 3C-SiC by different potentialscitations
- 2019Structure and Stability of Partial Dislocation Complexes in 3C-SiC by Molecular Dynamics Simulationscitations
- 2017Strain Engineering in Highly Mismatched SiGe/Si Heterostructurescitations
- 2017Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended filmcitations
- 2017Strain engineering in highly mismatched SiGe/Si heterostructurescitations
- 2016Temperature-controlled coalescence during the growth of Ge crystals on deeply patterned Si substratescitations
- 2016Elastic and Plastic Stress Relaxation in Highly Mismatched SiGe/Si Crystalscitations
- 2016Elastic and plastic stress relaxation in highly mismatched SiGe/Si crystalscitations
- 2016From plastic to elastic stress relaxation in highly mismatched SiGe/Si heterostructurescitations
- 2016From plastic to elastic stress relaxation in highly mismatched SiGe/Si heterostructurescitations
- 2015Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Sicitations
- 2015Local uniaxial tensile strain in germanium of up to 4% induced by SiGe epitaxial nanostructurescitations
- 2014Straining Ge bulk and nanomembranes for optoelectronic applications: a systematic numerical analysiscitations
Places of action
Organizations | Location | People |
---|
article
Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Si
Abstract
The move from dimensional to functional scaling in microelectronics has led to renewed interest toward integration of Ge on Si. In this work, simulation-driven experiments leading to high-quality suspended Ge films on Si pillars are reported. Starting from an array of micrometric Ge crystals, the film is obtained by exploiting their temperature-driven coalescence across nanometric gaps. The merging process is simulated by means of a suitable surface-diffusion model within a phase-field approach. The successful comparison between experimental and simulated data demonstrates that the morphological evolution is driven purely by the lowering of surface-curvature gradients. This allows for fine control over the final morphology to be attained. At fixed annealing time and temperature, perfectly merged films are obtained from Ge crystals grown at low temperature (450 degrees C), whereas some void regions still persist for crystals grown at higher temperature (500 degrees C) due to their different initial morphology. The latter condition, however, looks very promising for possible applications. Indeed, scanning tunneling electron microscopy and high-resolution transmission electron microscopy analyses show that, at least during the first stages of merging, the developing film is free from threading dislocations. The present findings, thus, introduce a promising path to integrate Ge layers on Si with a low dislocation density.