Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Burnett, Joseph

  • Google
  • 2
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Improving photocatalytic energy conversion via NAD(P)Hcitations
  • 2015Facile Fabrication of Near-Infrared-Resonant and Magnetic Resonance Imaging-Capable Nanomediators for Photothermal Therapy.14citations

Places of action

Chart of shared publication
Wang, Xiaodong
1 / 8 shared
Jones, Wilm
1 / 2 shared
Shi, Jiafu
1 / 1 shared
Howe, Russell F.
1 / 1 shared
Chart of publication period
2020
2015

Co-Authors (by relevance)

  • Wang, Xiaodong
  • Jones, Wilm
  • Shi, Jiafu
  • Howe, Russell F.
OrganizationsLocationPeople

article

Facile Fabrication of Near-Infrared-Resonant and Magnetic Resonance Imaging-Capable Nanomediators for Photothermal Therapy.

  • Burnett, Joseph
Abstract

Although many techniques exist for fabricating near-infrared (NIR)-resonant and magnetic resonance imaging (MRI)-capable nanomediators for photothermal cancer therapy, preparing them in an efficient and scalable process remains a significant challenge. In this report, we exploit one-step siloxane chemistry to facilely conjugate NIR-absorbing satellites onto a well-developed polysiloxane-containing polymer-coated iron oxide nanoparticle (IONP) core to generate dual functional core-satellite nanomediators for photothermal therapy. An advantage of this nanocomposite design is the variety of potential satellites that can be simply attached to impart NIR resonance, which we demonstrate using NIR-resonant gold sulfide nanoparticles (Au2SNPs) and the NIR dye IR820 as two example satellites. The core-satellite nanomediators are fully characterized by using absorption spectra, dynamic light scattering, ζ potential measurements, and transmission electron microscopy. The enhanced photothermal effect under the irradiation of NIR laser light is identified through in vitro solutions and in vivo mice studies. The MRI capabilities as contrast agents are demonstrated in mice. Our data suggest that polysiloxane-containing polymer-coated IONPs can be used as a versatile platform to build such dual functional nanomediators for translatable, MRI-guided photothermal cancer therapy.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • gold
  • transmission electron microscopy
  • iron
  • dynamic light scattering