People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tammelin, Tekla
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Interfacial Engineering of Soft Matter Substrates by Solid-State Polymer Adsorption
- 2024Advanced nanocellulose-based electrochemical sensor for tetracycline monitoringcitations
- 2023Protein Adsorption and Its Effects on Electroanalytical Performance of Nanocellulose/Carbon Nanotube Composite Electrodescitations
- 2022Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layercitations
- 2022Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layercitations
- 2021Functionalized Nanocellulose/Multiwalled Carbon Nanotube Composites for Electrochemical Applicationscitations
- 2020Upcycling Poultry Feathers with (Nano)cellulose:Sustainable Composites Derived from Nonwoven Whole Feather Preformscitations
- 2019Cationic starch as strengthening agent in nanofibrillated and bacterial cellulose nanopapers
- 2018Structural distinction due to deposition method in ultrathin films of cellulose nanofibrescitations
- 2018Foam-formed fibre materials
- 2018Effect of cellulosic fibers on foam dynamics
- 2017Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin filmscitations
- 2017Sample geometry dependency on the measured tensile properties of cellulose nanopaperscitations
- 2017In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous mediumcitations
- 2015Phase behaviour and stability of nanocellulose stabilized oil-in-water emulsions
- 2015Correlation between cellulose thin film supramolecular structures and interactions with watercitations
- 2014Nanofibrillated cellulose, poly(vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical propertiescitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose
- 2012High performance cellulose nanocompositescitations
- 2012High performance cellulose nanocomposites:Comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulosecitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose:Reinforcing ability of nanocellulose obtained topdown or bottom-up
- 2011Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoringcitations
- 2011Nanocomposite packaging materials from polysaccharides and montmorillonite
- 2010Multifunctional barrier films and coatings from biopolymers via enzymatic modification
- 2010Bio-hybrid nanocomposite coatings from polysaccharides and nanoclay
- 2003Adsorption of cationic starch on anionic silica studied by QCM-D ; Kationisen tärkkelyksen adsorptio anioniselle SiO2-pinnalle
Places of action
Organizations | Location | People |
---|
article
Interfacial Engineering of Soft Matter Substrates by Solid-State Polymer Adsorption
Abstract
Publisher Copyright: © 2024 The Authors. Published by American Chemical Society ; Polymer coating to substrates alters surface chemistry and imparts bulk material functionalities with a minute thickness, even in nanoscale. Specific surface modification of a substate usually requires an active substrate that, e.g., undergoes a chemical reaction with the modifying species. Here, we present a generic method for surface modification, namely, solid-state adsorption, occurring purely by entropic strive. Formed by heating above the melting point or glass transition and subsequent rinsing of the excess polymer, the emerging ultrathin (<10 nm) layers are known in fundamental polymer physics but have never been utilized as building blocks for materials and they have never been explored on soft matter substrates. We show with model surfaces as well as bulk substrates, how solid-state adsorption of common polymers, such as polystyrene and poly(lactic acid), can be applied on soft, cellulose-based substrates. Our study showcases the versatility of solid-state adsorption across various polymer/substrate systems. Specifically, we achieve proof-of-concept hydrophobization on flexible cellulosic substrates, maintaining irreversible and miniscule adsorption yet with nearly 100% coverage without compromising the bulk material properties. The method can be considered generic for all polymers whose Tg and Tm are below those of the to-be-coated adsorbed layer, and whose integrity can withstand the solvent leaching conditions. Its full potential has broad implications for diverse materials systems where surface coatings play an important role, such as packaging, foldable electronics, or membrane technology. ; Peer reviewed