People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Calero, Sofía
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024A simulation study of linker vacancy distribution and its effect on UiO-66 stabilitycitations
- 2024Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: Band gap tuning: Via iron substitutions
- 2024Temperature-Dependent Chirality in Halide Perovskitescitations
- 2024Adapted thermodynamical model for the prediction of adsorption in nanoporous materialscitations
- 2024Halogen-Decorated Metal-Organic Frameworks for Efficient and Selective CO2 Capture, Separation, and Chemical Fixation with Epoxides under Mild Conditionscitations
- 2022Thermostructural Characterization of Silicon Carbide Nanocomposite Materials via Molecular Dynamics Simulationscitations
- 2022Understanding the stability and structural properties of ordered nanoporous metals towards their rational synthesiscitations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskites:Insights from Reactive Molecular Dynamics Simulations of CsPbI 3citations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskitescitations
- 2020Further Extending the Dilution Range of the “Solvent-in-DES” Regime upon the Replacement of Water by an Organic Solvent with Hydrogen Bond Capabilitiescitations
- 2020Efficient modelling of ion structure and dynamics in inorganic metal halide perovskitescitations
- 2019Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materialscitations
- 2018Electronic structure of porphyrin-based metal– organic frameworks and their suitability for solar fuel production photocatalysis
- 2018iRASPAcitations
- 2018Role of Ionic Liquid [EMIM]+[SCN]- in the Adsorption and Diffusion of Gases in Metal-Organic Frameworkscitations
- 2018Influence of Flexibility on the Separation of Chiral Isomers in STW-Type Zeolitecitations
- 2017Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework seriescitations
- 2017Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysiscitations
- 2016Liquid self-diffusion of H2O and DMF molecules in Co-MOF-74citations
- 2016Storage and Separation of Carbon Dioxide and Methane in Hydrated Covalent Organic Frameworkscitations
- 2016RASPAcitations
- 2015Electronic structure of porphyrin-based metal-organic frameworks and their suitability for solar fuel production photocatalysiscitations
- 2015Thermostructural behaviour of Ni-Cr materialscitations
- 2015Design and development of a controlled pressure/temperature set-up for in situ studies of solid-gas processes and reactions in a synchrotron X-ray powder diffraction stationcitations
- 2015Molecular dynamics simulations of organohalide perovskite precursorscitations
- 2015Insights into the microscopic behaviour of nanoconfined watercitations
- 2014Exploring new methods and materials for enantioselective separations and catalysiscitations
- 2014Effect of the confinement and presence of cations on hydrogen bonding of water in LTA-type zeolitecitations
- 2014Hydrogen bonding of water confined in zeolites and their zeolitic imidazolate framework counterpartscitations
- 2010Analysis of the ITQ-12 zeolite performance in propane - Propylene separations using a combination of experiments and molecular simulationscitations
- 2010Effective Monte Carlo scheme for multicomponent gas adsorption and enantioselectivity in nanoporous materialscitations
- 2008Computing the heat of adsorption using molecular simulationscitations
- 2006Dynamically corrected transition state theory calculations of self-diffusion in anisotropic nanoporous materialscitations
- 2006Influence of cation Na/Ca ratio on adsorption in LTA 5Acitations
Places of action
Organizations | Location | People |
---|
article
Halogen-Decorated Metal-Organic Frameworks for Efficient and Selective CO2 Capture, Separation, and Chemical Fixation with Epoxides under Mild Conditions
Abstract
<p>In the present work, three novel halogen-appended cadmium(II) metal-organic frameworks [Cd<sub>2</sub>(L1)<sub>2</sub>(4,4′-Bipy)<sub>2</sub>]<sub>n</sub>·4n(DMF) (1), [Cd<sub>2</sub>(L2)<sub>2</sub>(4,4′-Bipy)<sub>2</sub>]<sub>n</sub>·3n(DMF) (2), and [Cd(L3)(4,4′-Bipy)]<sub>n</sub>·2n(DMF) (3) [where L1 = 5-{(4-bromobenzyl)amino}isophthalate; L2 = 5-{(4-chlorobenzyl)amino}isophthalate; L3 = 5-{(4-fluorobenzyl)amino}isophthalate; 4,4′-Bipy = 4,4′-bipyridine; and DMF = N,N′-dimethylformamide] have been synthesized under solvothermal conditions and characterized by various analytical techniques. The single-crystal X-ray diffraction analysis demonstrated that all the MOFs feature a similar type of three-dimensional structure having a binuclear [Cd<sub>2</sub>(COO)<sub>4</sub>(N)<sub>4</sub>] secondary building block unit. Moreover, MOFs 1 and 2 contain one-dimensional channels along the b-axis, whereas MOF 3 possesses a 1D channel along the a-axis. In these MOFs, the pores are decorated with multifunctional groups, i.e., halogen and amine. The gas adsorption analysis of these MOFs demonstrate that they display high uptake of CO<sub>2</sub> (up to 5.34 mmol/g) over N<sub>2</sub> and CH<sub>4</sub>. The isosteric heat of adsorption (Q<sub>st</sub>) value for CO<sub>2</sub> at zero loadings is in the range of 18-26 kJ mol<sup>-1</sup>. In order to understand the mechanism behind the better adsorption of CO<sub>2</sub> by our MOFs, we have also performed configurational bias Monte Carlo simulation studies, which confirm that the interaction between our MOFs and CO<sub>2</sub> is stronger compared to those with N<sub>2</sub> and CH<sub>4</sub>. Various noncovalent interactions, e.g., halogen (X)···O, Cd···O, and O···O, between CO<sub>2</sub> and the halogen atom, the Cd(II) metal center, and the carboxylate group from the MOFs are observed, respectively, which may be a reason for the higher carbon dioxide adsorption. Ideal adsorbed solution theory (IAST) calculations of MOF 1 demonstrate that the obtained selectivity values for CO<sub>2</sub>/CH<sub>4</sub> (50:50) and CO<sub>2</sub>/N<sub>2</sub> (15:85) are ca. 28 and 193 at 273 K, respectively. However, upon increasing the temperature to 298 K, the selectivity value (S = 34) decreases significantly for the CO<sub>2</sub>/N<sub>2</sub> mixture. We have also calculated the breakthrough analysis curves for all the MOFs using mixtures of CO<sub>2</sub>/CH<sub>4</sub> (50:50) and CO<sub>2</sub>/N<sub>2</sub> (50:50 and 15:85) at different entering gas velocities and observed larger retention times for CO<sub>2</sub> in comparison with other gases, which also signifies the stronger interaction between our MOFs and CO<sub>2</sub>. Moreover, due to the presence of Lewis acidic metal centers, these MOFs act as heterogeneous catalysts for the CO<sub>2</sub> fixation reactions with different epoxides in the presence of tetrabutyl ammonium bromide (TBAB), for conversion into industrially valuable cyclic carbonates. These MOFs exhibit a high conversion (96-99%) of epichlorohydrin (ECH) to the corresponding cyclic carbonate 4-(chloromethyl)-1,3-dioxolan-2-one after 12 h of reaction time at 1 bar of CO<sub>2</sub> pressure, at 65 °C. The MOFs can be reused up to four cycles without compromising their structural integrity as well as without losing their activity significantly.</p>