People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rijnders, Guus
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Enhanced Piezoelectricity by Polarization Rotation through Thermal Strain Manipulation in PbZr<sub>0.6</sub>Ti<sub>0.4</sub>O<sub>3</sub> Thin Films
- 2024The effect of intrinsic magnetic order on electrochemical water splittingcitations
- 2024Stabilizing Perovskite Pb(Mg<sub>0.33</sub>Nb<sub>0.67</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> Thin Films by Fast Deposition and Tensile Mismatched Growth Templatecitations
- 2023On the importance of the SrTiO3 template and the electronic contact layer for the integration of phase-pure low hysteretic Pb(Mg0.33Nb0.67)O3-PbTiO3 layers with Sicitations
- 2021Growth and crystallization of sio2/geo2 thin films on si(100) substratescitations
- 2021Growth and crystallization of sio 2 /geo 2 thin films on si(100) substratescitations
- 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Filmscitations
- 2020Origins of infrared transparency in highly conductive perovskite stannate BaSnO3citations
- 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Filmscitations
- 2020Epitaxial growth of full range of compositions of (1 1 1) PbZr1- xTixO3 on GaNcitations
- 2017Tuning of large piezoelectric response in nanosheet-buffered lead zirconate titanate films on glass substratescitations
- 2017One step toward a new generation of C-MOS compatible oxide PN junctionscitations
- 2016Long-range domain structure and symmetry engineering by interfacial oxygen octahedral coupling at heterostructure interfacecitations
- 2016A flexoelectric microelectromechanical system on siliconcitations
- 2015Epitaxy on Demandcitations
- 2014Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Maskscitations
- 2012High-Temperature Magnetic Insulating Phase in Ultrathin La0.67Sr0.33MnO3 Filmscitations
- 2011Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructurescitations
- 2009Low-temperature solution synthesis of chemically functional ferromagnetic FePtAu nanoparticlescitations
- 2007Magnetic effects at the interface between non-magnetic oxidescitations
Places of action
Organizations | Location | People |
---|
article
Stabilizing Perovskite Pb(Mg<sub>0.33</sub>Nb<sub>0.67</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> Thin Films by Fast Deposition and Tensile Mismatched Growth Template
Abstract
Because of its low hysteresis, high dielectric constant, and strong piezoelectric response, Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) thin films have attracted considerable attention for the application in PiezoMEMS, field-effect transistors, and energy harvesting and storage devices. However, it remains a great challenge to fabricate phase-pure, pyrochlore-free PMN-PT thin films. In this study, we demonstrate that a high deposition rate, combined with a tensile mismatched template layer can stabilize the perovskite phase of PMN-PT films and prevent the nucleation of passive pyrochlore phases. We observed that an accelerated deposition rate promoted mixing of the B-site cation and facilitated relaxation of the compressively strained PMN-PT on the SrTiO3 (STO) substrate in the initial growth layer, which apparently suppressed the initial formation of pyrochlore phases. By employing La-doped-BaSnO3 (LBSO) as the tensile mismatched buffer layer, 750 nm thick phase-pure perovskite PMN-PT films were synthesized. The resulting PMN-PT films exhibited excellent crystalline quality close to that of the STO substrate.