Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Diez, Jose Manuel

  • Google
  • 1
  • 12
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Toward Nonvolatile Spin-Orbit Devices6citations

Places of action

Chart of shared publication
Guedeja-Marrón, Alejandra
1 / 2 shared
Guerrero, Ruben
1 / 3 shared
Varela, Maria
1 / 6 shared
Mikolajick, Thomas
1 / 92 shared
Gärtner, Jan
1 / 3 shared
Lancaster, Suzanne
1 / 4 shared
Camarero, Julio
1 / 17 shared
Gudín, Adrian
1 / 2 shared
Perna, Paolo
1 / 19 shared
Anadón, Alberto
1 / 10 shared
Arnay, Iciar
1 / 3 shared
Slesazeck, Stefan
1 / 17 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Guedeja-Marrón, Alejandra
  • Guerrero, Ruben
  • Varela, Maria
  • Mikolajick, Thomas
  • Gärtner, Jan
  • Lancaster, Suzanne
  • Camarero, Julio
  • Gudín, Adrian
  • Perna, Paolo
  • Anadón, Alberto
  • Arnay, Iciar
  • Slesazeck, Stefan
OrganizationsLocationPeople

article

Toward Nonvolatile Spin-Orbit Devices

  • Guedeja-Marrón, Alejandra
  • Guerrero, Ruben
  • Varela, Maria
  • Mikolajick, Thomas
  • Gärtner, Jan
  • Lancaster, Suzanne
  • Camarero, Julio
  • Gudín, Adrian
  • Perna, Paolo
  • Anadón, Alberto
  • Diez, Jose Manuel
  • Arnay, Iciar
  • Slesazeck, Stefan
Abstract

<p>While technologically challenging, the integration of ferroelectric thin films with graphene spintronics potentially allows the realization of highly efficient, electrically tunable, nonvolatile memories through control of the interfacial spin-orbit driven interaction occurring at graphene/Co interfaces deposited on heavy metal supports. Here, the integration of ferroelectric Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> on graphene/Co/heavy metal epitaxial stacks is investigated via the implementation of several nucleation methods in atomic layer deposition. By employing in situ Al<sub>2</sub>O<sub>3</sub> as a nucleation layer sandwiched between Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> and graphene, the Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> demonstrates a remanent polarization (2Pr) of 19.2 μC/cm<sup>2</sup>. Using an ex situ, naturally oxidized sputtered Ta layer for nucleation, we could control 2Pr via the interlayer thickness, reaching maximum values of 28 μC/cm<sup>2</sup> with low coercive fields. Magnetic hysteresis measurements taken before and after atomic layer deposition show strong perpendicular magnetic anisotropy, with minimal deviations in the magnetization reversal pathways due to the Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> deposition process, thus pointing to a good preservation of the magnetic stack including single-layer graphene. X-ray diffraction measurements further confirm that the high-quality interfaces demonstrated in the stack remain unperturbed by the ferroelectric deposition and anneal. The proposed graphene-based ferroelectric/magnetic structures offer the strong advantages of ferroelectricity and ferromagnetism at room temperature, enabling the development of novel magneto-electric and nonvolatile in-memory spin-orbit logic architectures with low power switching.</p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • thin film
  • interfacial
  • magnetization
  • atomic layer deposition