People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jakubczyk, Ewa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023High Power Factor Nb-Doped TiO2 Thermoelectric Thick Films: Toward Atomic Scale Defect Engineering of Crystallographic Shear Structurescitations
- 2023High Power Factor Nb-Doped TiO2 Thermoelectric Thick Films:Toward Atomic Scale Defect Engineering of Crystallographic Shear Structurescitations
- 2021Modulation of electrical transport in calcium cobaltite ceramics and thick films through microstructure control and dopingcitations
- 2017Analysis of atomic oxygen and ultraviolet exposure effects on cycloaliphatic epoxy resins reinforced with octa-functional POSScitations
- 2014Effect of sodium rich pretreatments and processing conditions on microstructure and property evolution of sodium cobalt oxide thermoelectric materials
- 2011Possibilities of X-ray nano-CT for internal quality assessment of food products
Places of action
Organizations | Location | People |
---|
article
High Power Factor Nb-Doped TiO2 Thermoelectric Thick Films: Toward Atomic Scale Defect Engineering of Crystallographic Shear Structures
Abstract
Donor-doped TiO 2 -based materials are promising thermoelectrics (TEs) due to their low cost and high stability at elevated temperatures. Herein, high-performance Nb-doped TiO 2 thick films are fabricated by facile and scalable screen-printing techniques. Enhanced TE performance has been achieved by forming high-density crystallographic shear (CS) structures. All films exhibit the same matrix rutile structure but contain different nano-sized defect structures. Typically, in films with low Nb content, high concentrations of oxygen-deficient {121} CS planes are formed, while in films with high Nb content, a high density of twin boundaries are found. Through the use of strongly reducing atmospheres, a novel Al-segregated {210} CS structure is formed in films with higher Nb content. By advanced aberration-corrected scanning transmission electron microscopy techniques, we reveal the nature of the {210} CS structure at the nano-scale. These CS structures contain abundant oxygen vacancies and are believed to enable energy-filtering effects, leading to simultaneous enhancement of both the electrical conductivity and Seebeck coefficients. The optimized films exhibit a maximum power factor of 4.3 × 10 -4 W m -1 K -2 at 673 K, the highest value for TiO 2 -based TE films at elevated temperatures. Our modulation strategy based on microstructure modification provides a novel route for atomic-level defect engineering which should guide the development of other TE materials.