People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhong, Xiangli
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Understanding Ag liquid migration in SiC through ex-situ and in-situ Ag-Pd/SiC interaction studiescitations
- 2024High resolution analytical microscopy of damage progression within a polyester powder coating after cyclic corrosion testing
- 2023Precursor-Led Grain Boundary Engineering for Superior Thermoelectric Performance in Niobium Strontium Titanate.
- 2023High Power Factor Nb-Doped TiO2 Thermoelectric Thick Films: Toward Atomic Scale Defect Engineering of Crystallographic Shear Structurescitations
- 2023Mitigation effects of over-aging (T73) induced intergranular corrosion on stress corrosion cracking of AA7075 aluminum alloy and behaviors of η phase grain boundary precipitates during the intergranular corrosion formationcitations
- 2023Precursor-Led Grain Boundary Engineering for Superior Thermoelectric Performance in Niobium Strontium Titanatecitations
- 2023High Power Factor Nb-Doped TiO2 Thermoelectric Thick Films:Toward Atomic Scale Defect Engineering of Crystallographic Shear Structurescitations
- 2022Mechanism of FIB-Induced Phase Transformation in Austenitic Steelcitations
- 2021Oxidation and carburization behaviour of two type 316H stainless steel casts in simulated AGR gas environment at 550 and 600 °Ccitations
- 2020Comparing Xe+pFIB and Ga+FIB for TEM sample preparation of Al alloys: Minimising FIB-induced artefactscitations
- 2020Comparing Xe+pFIB and Ga+FIB for TEM sample preparation of Al alloys: Minimising FIB-induced artefactscitations
- 2018Multi-Modal Plasma Focused Ion Beam Serial Section Tomography of an Organic Paint Coatingcitations
- 2017A Single Source Precursor for Tungsten Dichalcogenide Thin Films: Mo1-xWxS2 (0 ≤ x ≤ 1) Alloys by Aerosol-Assisted Chemical Vapor Deposition (AACVD)citations
- 2016Chemical Vapour Deposition of Rhenium Disulfide and Rhenium-Doped Molybdenum Disulfide Thin Films Using Single-Source Precursorscitations
- 2016Xe+ Plasma FIB: 3D Microstructures from Nanometers to Hundreds of Micrometerscitations
- 2016Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimenscitations
- 2016Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimenscitations
- 2015Behavior of alloying elements during anodizing of Mg-Cu and Mg-W alloys in a fluoride/glycerol electrolytecitations
- 2014Formation of barrier-type anodic films on ZE41 magnesium alloy in a fluoride/glycerol electrolytecitations
- 2010Using microwave-assisted powder metallurgy route and nano-size reinforcements to develop high-strength solder compositescitations
- 2009Effect of sub-micron alumina particulates on the properties of A Sn-0.7Cu lead-free solder alloy
- 2008Using microwave assisted powder metallurgy route and nano-size reinforcements to develop high strength lead-free solder composites
- 2005Enhancing damping of pure magnesium using nano-size alumina particulatescitations
Places of action
Organizations | Location | People |
---|
article
High Power Factor Nb-Doped TiO2 Thermoelectric Thick Films: Toward Atomic Scale Defect Engineering of Crystallographic Shear Structures
Abstract
Donor-doped TiO 2 -based materials are promising thermoelectrics (TEs) due to their low cost and high stability at elevated temperatures. Herein, high-performance Nb-doped TiO 2 thick films are fabricated by facile and scalable screen-printing techniques. Enhanced TE performance has been achieved by forming high-density crystallographic shear (CS) structures. All films exhibit the same matrix rutile structure but contain different nano-sized defect structures. Typically, in films with low Nb content, high concentrations of oxygen-deficient {121} CS planes are formed, while in films with high Nb content, a high density of twin boundaries are found. Through the use of strongly reducing atmospheres, a novel Al-segregated {210} CS structure is formed in films with higher Nb content. By advanced aberration-corrected scanning transmission electron microscopy techniques, we reveal the nature of the {210} CS structure at the nano-scale. These CS structures contain abundant oxygen vacancies and are believed to enable energy-filtering effects, leading to simultaneous enhancement of both the electrical conductivity and Seebeck coefficients. The optimized films exhibit a maximum power factor of 4.3 × 10 -4 W m -1 K -2 at 673 K, the highest value for TiO 2 -based TE films at elevated temperatures. Our modulation strategy based on microstructure modification provides a novel route for atomic-level defect engineering which should guide the development of other TE materials.