People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Chung-Che
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2023Conformal CVD-grown MoS2 on three-dimensional woodpile photonic crystals for photonic bandgap engineeringcitations
- 2022Low energy switching of phase change materials using a 2D thermal boundary layercitations
- 2020Enhancement of nonlinear functionality of step-index silica fibers combining thermal poling and 2D materials depositioncitations
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Tuning MoS2 metamaterial with elastic strain
- 2019Tuning MoS 2 metamaterial with elastic strain
- 2018Optical-resonance-enhanced nonlinearities in a MoS2-coated single-mode fibercitations
- 2018Fabrication of micro-scale fracture specimens for nuclear applications by direct laser writing
- 2017Wafer scale pre-patterned ALD MoS 2 FETs
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale pre-patterned ALD MoS2 FETs
- 2017Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenides
- 2017A lift-off method for wafer scale hetero-structuring of 2D materials
- 2016Next generation chalcogenide glasses for visible and IR imaging
- 2016Advanced CVD technology for emerging transition metal di-chalcogenides
- 2015Fabrication of tin sulphide and emerging transition metal di-chalcogenides by CVD
- 2015CVD-grown tin sulphide for thin film solar cell devices
- 2014Manufacturing high purity chalcogenide glass
- 2013Crystallization study of the CuSbS2 chalcogenide material for solar applications
- 2012Laser-induced crystalline optical waveguide in glass fiber formatcitations
- 2011Novel methods for the preparation of high purity chalcogenide glass for optical fiber applications
- 2010Switching metamaterials with electronic signals and electron-beam excitations
- 2010Metamaterial electro-optic switch of nanoscale thicknesscitations
- 2010Chalcogenide glasses for photonics device applications
- 2010Chalcogenide plasmonic metamaterial switches
- 2010Active chalcogenide glass photonics and electro-optics for the mid-infrared
- 2009Chalcogenide glass metamaterial optical switch
- 2009Focused ion beam etched ring-resonator in CVD-grown Ge-Sb-S thin films
- 2007Antimony germanium sulphide amorphous thin films fabricated by chemical vapour depositioncitations
- 2007Electrical phase change of Ga:La:S:Cu filmscitations
- 2005Chalcogenide glass thin films and planar waveguidescitations
- 2004Deposition and characterization of germanium sulphide glass planar waveguidescitations
- 2003Properties and application of germanium sulphide glass
- 2003Through thick and thin: recent developments with chalcogenide films
Places of action
Organizations | Location | People |
---|
article
Low energy switching of phase change materials using a 2D thermal boundary layer
Abstract
The switchable optical and electrical properties of phase change materials (PCMs) are finding new applications beyond data storage in reconfigurable photonic devices. However, high power heat pulses are needed to melt-quench the material from crystalline to amorphous. This is especially true in silicon photonics, where the high thermal conductivity of the waveguide material makes heating the PCM energy inefficient. Here, we improve the energy efficiency of the laser-induced phase transitions by inserting a layer of two-dimensional (2D) material, either MoS<sub>2</sub> or WS<sub>2</sub>, between the silica or silicon substrate and the PCM. The 2D material reduces the required laser power by at least 40% during the amorphization (RESET) process, depending on the substrate. Thermal simulations confirm that both MoS<sub>2</sub> and WS<sub>2</sub> 2D layers act as a thermal barrier, which efficiently confines energy within the PCM layer. Remarkably, the thermal insulation effect of the 2D layer is equivalent to a ∼100 nm layer of SiO<sub>2</sub>. The high thermal boundary resistance induced by the van der Waals (vdW)-bonded layers limits the thermal diffusion through the layer interface. Hence, 2D materials with stable vdW interfaces can be used to improve the thermal efficiency of PCM-tuned Si photonic devices. Furthermore, our waveguide simulations show that the 2D layer does not affect the propagating mode in the Si waveguide; thus, this simple additional thin film produces a substantial energy efficiency improvement without degrading the optical performance of the waveguide. Our findings pave the way for energy-efficient laser-induced structural phase transitions in PCM-based reconfigurable photonic devices.