Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zeimpekis, Ioannis

  • Google
  • 24
  • 68
  • 289

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (24/24 displayed)

  • 2023Large-area synthesis of high electrical performance MoS2 by a commercially scalable atomic layer deposition process30citations
  • 2023Expanding the transmission window of visible-MWIR chalcogenide glasses by silicon nitride dopingcitations
  • 2023Large-area synthesis of high electrical performance MoS 2 by a commercially scalable atomic layer deposition process30citations
  • 2023Large-area synthesis of high electrical performance MoS 2 by a commercially scalable atomic layer deposition process30citations
  • 2022Room temperature phase transition of W-doped VO 2 by atomic layer deposition on 200 mm Si wafers and flexible substrates40citations
  • 2022Low energy switching of phase change materials using a 2D thermal boundary layer11citations
  • 2022Low energy switching of phase change materials using a 2D thermal boundary layer11citations
  • 2022Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substrates40citations
  • 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)citations
  • 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)citations
  • 2019Mechanochromic reconfigurable metasurfaces27citations
  • 2019Mechanochromic reconfigurable metasurfaces27citations
  • 2019Tuning MoS2 metamaterial with elastic straincitations
  • 2019Tuning MoS 2 metamaterial with elastic straincitations
  • 2019High-throughput physical vapour deposition flexible thermoelectric generators41citations
  • 2018Fabrication of micro-scale fracture specimens for nuclear applications by direct laser writingcitations
  • 2017Wafer scale pre-patterned ALD MoS 2 FETscitations
  • 2017Wafer scale spatially selective transfer of 2D materials and heterostructurescitations
  • 2017Wafer scale spatially selective transfer of 2D materials and heterostructurescitations
  • 2017Structural modification of Ga-La-S glass for a new family of chalcogenides2citations
  • 2017Wafer scale pre-patterned ALD MoS2 FETscitations
  • 2017Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenidescitations
  • 2017Tuneable sputtered films by doping for wearable and flexible thermoelectricscitations
  • 2017A lift-off method for wafer scale hetero-structuring of 2D materialscitations

Places of action

Chart of shared publication
Müller-Caspary, Knut
3 / 9 shared
Hewak, Daniel W.
14 / 80 shared
Ebert, Martin
3 / 7 shared
Morgan, Katrina
7 / 8 shared
Huang, Chung Che
2 / 2 shared
März, Benjamin
3 / 3 shared
Majumdar, Sayani
3 / 23 shared
Light, Mark E.
2 / 6 shared
Aspiotis, Nikolaos
15 / 18 shared
Weatherby, Ed
4 / 6 shared
Morgan, Katrina Anne
8 / 14 shared
Craig, Christopher
6 / 37 shared
Xu, Dichu
1 / 7 shared
Archer, Ellis
1 / 1 shared
Weatherby, Edwin
3 / 4 shared
Huang, Kevin Chung-Che
2 / 2 shared
Light, Mark
1 / 2 shared
Muskens, Otto L.
1 / 2 shared
Urbani, Alessandro
2 / 4 shared
Hillier, James A.
2 / 2 shared
Kalfagiannis, Nikolaos
2 / 10 shared
De Groot, Cornelis H.
1 / 1 shared
Sun, Kai
2 / 7 shared
Ye, Sheng
2 / 4 shared
Wheeler, Callum
2 / 5 shared
Huang, Chung-Che
14 / 38 shared
Wang, Yunzheng
2 / 2 shared
Simpson, Robert E.
2 / 6 shared
Teo, Siew Lang
2 / 2 shared
Ning, Jing
2 / 5 shared
Bosman, Michel
2 / 6 shared
Teo, Ting Yu
2 / 2 shared
De Groot, Cornelis
1 / 41 shared
Muskens, Otto
1 / 6 shared
Guzman Cruz, Fernando, Alberto
1 / 2 shared
Alzaidy, Ghadah, Abdulrahman
1 / 2 shared
Hewak, Daniel
6 / 10 shared
Feng, Zhuo
3 / 4 shared
Lewis, Adam, Henry
1 / 1 shared
Moog, Bruno, Jean
1 / 2 shared
Ravagli, Andrea
5 / 19 shared
Delaney, Matthew
2 / 2 shared
Adam, Henry Lewis
1 / 1 shared
Guzman, Fernando
1 / 5 shared
Ghadah, Abdulrahman Alzaidy
1 / 2 shared
Bruno, Jean Moog
1 / 2 shared
Karvounis, Artemios
4 / 8 shared
Ou, Jun-Yu
4 / 11 shared
Zheludev, Nikolay
1 / 1 shared
Zheludev, Nikolai
1 / 1 shared
Tang, Tian
1 / 2 shared
Barker, Clara
1 / 2 shared
Yarmolich, Dmitry
1 / 1 shared
Assender, Hazel
1 / 1 shared
Yao, Jin
2 / 5 shared
Taverne, Mike P. C.
1 / 2 shared
Zeng, Xu
1 / 1 shared
Mostafavi, Mahmoud
1 / 58 shared
Ho, Ying-Lung Daniel
1 / 1 shared
Shterenlikht, Anton
1 / 23 shared
Abbas, Omar Adnan
1 / 1 shared
Sazio, Pier-John
3 / 56 shared
Mailis, Sakellaris
2 / 7 shared
Abbas, Omar, Adnan
2 / 2 shared
Aghajani, Armen
1 / 2 shared
Alzaidy, Ghadah
2 / 3 shared
Cui, Qingsong
1 / 2 shared
Craig, Chris
1 / 1 shared
Chart of publication period
2023
2022
2019
2018
2017

Co-Authors (by relevance)

  • Müller-Caspary, Knut
  • Hewak, Daniel W.
  • Ebert, Martin
  • Morgan, Katrina
  • Huang, Chung Che
  • März, Benjamin
  • Majumdar, Sayani
  • Light, Mark E.
  • Aspiotis, Nikolaos
  • Weatherby, Ed
  • Morgan, Katrina Anne
  • Craig, Christopher
  • Xu, Dichu
  • Archer, Ellis
  • Weatherby, Edwin
  • Huang, Kevin Chung-Che
  • Light, Mark
  • Muskens, Otto L.
  • Urbani, Alessandro
  • Hillier, James A.
  • Kalfagiannis, Nikolaos
  • De Groot, Cornelis H.
  • Sun, Kai
  • Ye, Sheng
  • Wheeler, Callum
  • Huang, Chung-Che
  • Wang, Yunzheng
  • Simpson, Robert E.
  • Teo, Siew Lang
  • Ning, Jing
  • Bosman, Michel
  • Teo, Ting Yu
  • De Groot, Cornelis
  • Muskens, Otto
  • Guzman Cruz, Fernando, Alberto
  • Alzaidy, Ghadah, Abdulrahman
  • Hewak, Daniel
  • Feng, Zhuo
  • Lewis, Adam, Henry
  • Moog, Bruno, Jean
  • Ravagli, Andrea
  • Delaney, Matthew
  • Adam, Henry Lewis
  • Guzman, Fernando
  • Ghadah, Abdulrahman Alzaidy
  • Bruno, Jean Moog
  • Karvounis, Artemios
  • Ou, Jun-Yu
  • Zheludev, Nikolay
  • Zheludev, Nikolai
  • Tang, Tian
  • Barker, Clara
  • Yarmolich, Dmitry
  • Assender, Hazel
  • Yao, Jin
  • Taverne, Mike P. C.
  • Zeng, Xu
  • Mostafavi, Mahmoud
  • Ho, Ying-Lung Daniel
  • Shterenlikht, Anton
  • Abbas, Omar Adnan
  • Sazio, Pier-John
  • Mailis, Sakellaris
  • Abbas, Omar, Adnan
  • Aghajani, Armen
  • Alzaidy, Ghadah
  • Cui, Qingsong
  • Craig, Chris
OrganizationsLocationPeople

article

Low energy switching of phase change materials using a 2D thermal boundary layer

  • Huang, Chung-Che
  • Wang, Yunzheng
  • Morgan, Katrina Anne
  • Simpson, Robert E.
  • Hewak, Daniel W.
  • Teo, Siew Lang
  • Ning, Jing
  • Bosman, Michel
  • Teo, Ting Yu
  • Zeimpekis, Ioannis
Abstract

The switchable optical and electrical properties of phase change materials (PCMs) are finding new applications beyond data storage in reconfigurable photonic devices. However, high power heat pulses are needed to melt-quench the material from crystalline to amorphous. This is especially true in silicon photonics, where the high thermal conductivity of the waveguide material makes heating the PCM energy inefficient. Here, we improve the energy efficiency of the laser-induced phase transitions by inserting a layer of two-dimensional (2D) material, either MoS<sub>2</sub> or WS<sub>2</sub>, between the silica or silicon substrate and the PCM. The 2D material reduces the required laser power by at least 40% during the amorphization (RESET) process, depending on the substrate. Thermal simulations confirm that both MoS<sub>2</sub> and WS<sub>2</sub> 2D layers act as a thermal barrier, which efficiently confines energy within the PCM layer. Remarkably, the thermal insulation effect of the 2D layer is equivalent to a ∼100 nm layer of SiO<sub>2</sub>. The high thermal boundary resistance induced by the van der Waals (vdW)-bonded layers limits the thermal diffusion through the layer interface. Hence, 2D materials with stable vdW interfaces can be used to improve the thermal efficiency of PCM-tuned Si photonic devices. Furthermore, our waveguide simulations show that the 2D layer does not affect the propagating mode in the Si waveguide; thus, this simple additional thin film produces a substantial energy efficiency improvement without degrading the optical performance of the waveguide. Our findings pave the way for energy-efficient laser-induced structural phase transitions in PCM-based reconfigurable photonic devices.

Topics
  • impedance spectroscopy
  • amorphous
  • thin film
  • simulation
  • melt
  • phase transition
  • Silicon
  • two-dimensional
  • thermal conductivity