Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Simpson, Robert E.

  • Google
  • 6
  • 29
  • 54

University of Birmingham

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Enhanced far-field coherent thermal emission using mid-infrared bilayer metasurfaces8citations
  • 2022Low energy switching of phase change materials using a 2D thermal boundary layer11citations
  • 2022Low energy switching of phase change materials using a 2D thermal boundary layer11citations
  • 20223D printing mesoscale optical components with a low-cost resin printer integrated with a fiber-optic taper11citations
  • 2020Differences in Sb2Te3 growth by pulsed laser and sputter deposition13citations
  • 2008Chalcogenide thin film materials for next generation data storagecitations

Places of action

Chart of shared publication
Submi, Shin
1 / 1 shared
Li, Sichao
1 / 4 shared
Huang, Chung-Che
1 / 38 shared
Wang, Yunzheng
2 / 2 shared
Morgan, Katrina Anne
1 / 14 shared
Hewak, Daniel W.
2 / 80 shared
Teo, Siew Lang
2 / 2 shared
Ning, Jing
3 / 5 shared
Bosman, Michel
2 / 6 shared
Teo, Ting Yu
2 / 2 shared
Zeimpekis, Ioannis
2 / 24 shared
Morgan, Katrina
1 / 8 shared
Huang, Kevin Chung-Che
1 / 2 shared
Wang, Hongtao
1 / 1 shared
Parvathi Nair, S.
1 / 1 shared
Rezaei, Soroosh Daqiqeh
1 / 1 shared
Ruan, Qifeng
1 / 1 shared
Trisno, Jonathan
1 / 1 shared
Yang, Joel K. W.
1 / 1 shared
Kooi, Bart J.
1 / 29 shared
Vashishta, Priya
1 / 6 shared
Branicio, Paulo S.
1 / 5 shared
Nakano, Aiichiro
1 / 5 shared
Shimojo, Fuyuki
1 / 4 shared
Momand, Jamo
1 / 22 shared
Zhang, Heng
1 / 15 shared
Martinez, Jose C.
1 / 1 shared
Tiwari, Subodh C.
1 / 1 shared
Kalia, Rajiv K.
1 / 2 shared
Chart of publication period
2023
2022
2020
2008

Co-Authors (by relevance)

  • Submi, Shin
  • Li, Sichao
  • Huang, Chung-Che
  • Wang, Yunzheng
  • Morgan, Katrina Anne
  • Hewak, Daniel W.
  • Teo, Siew Lang
  • Ning, Jing
  • Bosman, Michel
  • Teo, Ting Yu
  • Zeimpekis, Ioannis
  • Morgan, Katrina
  • Huang, Kevin Chung-Che
  • Wang, Hongtao
  • Parvathi Nair, S.
  • Rezaei, Soroosh Daqiqeh
  • Ruan, Qifeng
  • Trisno, Jonathan
  • Yang, Joel K. W.
  • Kooi, Bart J.
  • Vashishta, Priya
  • Branicio, Paulo S.
  • Nakano, Aiichiro
  • Shimojo, Fuyuki
  • Momand, Jamo
  • Zhang, Heng
  • Martinez, Jose C.
  • Tiwari, Subodh C.
  • Kalia, Rajiv K.
OrganizationsLocationPeople

article

Low energy switching of phase change materials using a 2D thermal boundary layer

  • Huang, Chung-Che
  • Wang, Yunzheng
  • Morgan, Katrina Anne
  • Simpson, Robert E.
  • Hewak, Daniel W.
  • Teo, Siew Lang
  • Ning, Jing
  • Bosman, Michel
  • Teo, Ting Yu
  • Zeimpekis, Ioannis
Abstract

The switchable optical and electrical properties of phase change materials (PCMs) are finding new applications beyond data storage in reconfigurable photonic devices. However, high power heat pulses are needed to melt-quench the material from crystalline to amorphous. This is especially true in silicon photonics, where the high thermal conductivity of the waveguide material makes heating the PCM energy inefficient. Here, we improve the energy efficiency of the laser-induced phase transitions by inserting a layer of two-dimensional (2D) material, either MoS<sub>2</sub> or WS<sub>2</sub>, between the silica or silicon substrate and the PCM. The 2D material reduces the required laser power by at least 40% during the amorphization (RESET) process, depending on the substrate. Thermal simulations confirm that both MoS<sub>2</sub> and WS<sub>2</sub> 2D layers act as a thermal barrier, which efficiently confines energy within the PCM layer. Remarkably, the thermal insulation effect of the 2D layer is equivalent to a ∼100 nm layer of SiO<sub>2</sub>. The high thermal boundary resistance induced by the van der Waals (vdW)-bonded layers limits the thermal diffusion through the layer interface. Hence, 2D materials with stable vdW interfaces can be used to improve the thermal efficiency of PCM-tuned Si photonic devices. Furthermore, our waveguide simulations show that the 2D layer does not affect the propagating mode in the Si waveguide; thus, this simple additional thin film produces a substantial energy efficiency improvement without degrading the optical performance of the waveguide. Our findings pave the way for energy-efficient laser-induced structural phase transitions in PCM-based reconfigurable photonic devices.

Topics
  • impedance spectroscopy
  • amorphous
  • thin film
  • simulation
  • melt
  • phase transition
  • Silicon
  • two-dimensional
  • thermal conductivity