People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Andersen, Shuang Ma
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2022Post-degradation case study of the membrane electrode assembly from a low-temperature PEMFC stack
- 2022Post-degradation case study of the membrane electrode assembly from a low-temperature PEMFC stack
- 2022Microwave-Assisted Scalable Synthesis of Pt/Ccitations
- 2022Microwave-Assisted Scalable Synthesis of Pt/C:Impact of the Microwave Irradiation and Carrier Solution Polarity on Nanoparticle Formation and Aging of the Support Carboncitations
- 2022Insights into Degradation of the Membrane–Electrode Assembly Performance in Low-Temperature PEMFC:the Catalyst, the Ionomer, or the Interface?citations
- 2022Towering non-Faradaic capacitive storage based on high quality reduced graphene oxide from spent graphitecitations
- 2022Insights into Degradation of the Membrane–Electrode Assembly Performance in Low-Temperature PEMFCcitations
- 2021Degradation mechanisms of electrochemical activity of Pt/C during the accelerated stress test focused on catalyst support corrosion
- 2020Preparation and Characterization of Poly(Vinyl Alcohol) (PVA)/SiO 2 , PVA/Sulfosuccinic Acid (SSA) and PVA/SiO 2 /SSA Membranes:A Comparative Studycitations
- 2020Solution combustion synthesized ceria or alumina supported Pt as cathode electrocatalyst for PEM fuel cellscitations
- 2020Preparation and Characterization of Poly(Vinyl Alcohol) (PVA)/SiO2, PVA/Sulfosuccinic Acid (SSA) and PVA/SiO2/SSA Membranescitations
- 2020Platinum recycling through electroless dissolution under mild conditions using a surface activation assisted Pt-complexing approachcitations
- 2020Platinum recycling through electroless dissolution under mild conditions using a surface activation assisted Pt-complexing approachcitations
- 2019Influence of dispersion media on Nafion® ionomer distribution in proton exchange membrane fuel cell catalyst carbon supportcitations
- 2019Influence of dispersion media on Nafion® ionomer distribution in proton exchange membrane fuel cell catalyst carbon supportcitations
- 2018Accurate Determination of Catalyst Loading on Glassy Carbon Disk and Its Impact on Thin Film Rotating Disk Electrode for Oxygen Reduction Reactioncitations
- 2018Exploring the XRF technique as a tool to estimate the degree of leaching in alloy-catalysts used for PEMFCs
- 2018Environmentally and industrially friendly recycling of platinum nanoparticles through electrochemical dissolution–electrodeposition in acid‐free/dilute acidic electrolytescitations
- 2018Environmentally and industrially friendly recycling of platinum nanoparticles through electrochemical dissolution–electrodeposition in acid‐free/dilute acidic electrolytescitations
- 2018Accurate determination of catalyst loading on glassy carbon disk and its impact on thin film rotating disk electrode for oxygen reduction reaction.
- 2018Investigating the single-step solution combustion method for synthesis of oxide supported/unsupported Pt/PtOx, as cathode electrocatalysts for PEMFCs
- 2017Helium Ion Microscopy of proton exchange membrane fuel cell electrode structurescitations
- 2017Helium Ion Microscopy of proton exchange membrane fuel cell electrode structurescitations
- 2016Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structurescitations
- 2015Tin Dioxide as an Effective Antioxidant for Proton Exchange Membrane Fuel Cellscitations
- 2015Tin Dioxide as an Effective Antioxidant for Proton Exchange Membrane Fuel Cellscitations
- 2014Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalystscitations
- 2014Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalystscitations
- 2013Durability of Carbon Nanofiber (CNF) & Carbon Nanotube (CNT) as Catalyst Support for Proton Exchange Membrane Fuel Cellscitations
- 2012Interaction between Nafion ionomer and noble metal catalyst for PEMFCs
Places of action
Organizations | Location | People |
---|
article
Insights into Degradation of the Membrane–Electrode Assembly Performance in Low-Temperature PEMFC
Abstract
Here, we report a study on the structural characteristics of membrane electrode assembly (MEA) samples obtained from a low-temperature (LT) polymer electrolyte membrane (PEM) fuel cell (FC) stack subjected to long-term durability testing for ∼18,500 h of nominal operation along with ∼900 on/off cycles accumulated over the operation time, with the total power production being 3.39 kW h/cm2 of MEA and the overall degradation being 87% based on performance loss. The chemical and physical states of the degraded MEAs were investigated through structural characterizations aiming to probe their different components, namely the cathode and anode electrocatalysts, the Nafion ionomer in the catalyst layers (CLs), the gas diffusion layers (GDLs), and the PEM. Surprisingly, X-ray diffraction and electron microscopy studies suggested no significant degradation of the electrocatalysts. Similarly, the cathode and anode GDLs exhibited no significant change in porosity and structure as indicated by BET analysis and helium ion microscopy. Nevertheless, X-ray fluorescence spectroscopy, elemental analysis through a CHNS analyzer, and comprehensive investigations by X-ray photoelectron spectroscopy suggested significant degradation of the Nafion, especially in terms of sulfur content, that is, the abundance of the −SO3– groups responsible for H+ conduction. Hence, the degradation of the Nafion, in both of the CLs and in the PEM, was found to be the principal mechanism for performance degradation, while the Pt/C catalyst degradation in terms of particle size enlargement or mass loss was minimal. The study suggests that under real-life operating conditions, ionomer degradation plays a more significant role than electrocatalyst degradation in LT-PEMFCs, in contrast to many scientific studies under artificial stress conditions. Mitigation of the ionomer degradation must be emphasized as a strategy to improve the PEMFC’s durability.