Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zenkert, Dan

  • Google
  • 38
  • 60
  • 1547

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (38/38 displayed)

  • 2024Fatigue performance and damage characterisation of ultra-thin tow-based discontinuous tape composites5citations
  • 2024Strength analysis and failure prediction of thin tow-based discontinuous composites7citations
  • 2022Multifunctional Carbon Fiber Composites: A Structural, Energy Harvesting, Strain-Sensing Materialcitations
  • 2020Carbon Fiber Based Positive Electrodes in Laminated Structural Li-Ion Batteries1citations
  • 2019Carbon Fibre Composite Structural Batteries: A Review200citations
  • 2018Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries108citations
  • 2018Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes85citations
  • 2017Structural lithium ion battery electrolytes via reaction induced phase-separation128citations
  • 2016Impact response of ductile self-reinforced composite corrugated sandwich beams45citations
  • 2015Integral versus differential design for high-volume manufacturing of composite structures7citations
  • 2015Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers54citations
  • 2015Analysis of Carbon Fiber Composite Electrodecitations
  • 2015Dynamic compression response of self-reinforced poly(ethylene terephthalate) composites and corrugated sandwich cores41citations
  • 2015Cost and weight efficient partitioning of composite automotive structures16citations
  • 2013Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites46citations
  • 2013Expansion of carbon fibres induced by lithium intercalation for structural electrode applications84citations
  • 2012Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries98citations
  • 2011Impact of mechanical loading on the electrochemical behaviour of carbon fibers for use in energy storage composite materialscitations
  • 2011Failure mode shifts during constant amplitude fatigue loading of GFRP/foam core sandwich beams45citations
  • 2011Strength of multi-axial laminates with multiple randomly distributed holescitations
  • 2011Impact of the mechanical loading on the electrochemical capacity of carbon fibres for use in energy storage composite materialscitations
  • 2011Failure Mechanisms in Composite Panels Subjected to Underwater Impulsive Loads89citations
  • 2011Optimisation of Composite Stuctures : Design for Costcitations
  • 2010Testing and analysis of ultra thick composites46citations
  • 2010Cost/weight optimization of composite prepreg structures for best draping strategy25citations
  • 2010Spectrum Slam Fatigue Loading of Sandwich Materials for Marine Structurescitations
  • 2010Buckling of laser-welded sandwich panels : ultimate strength and experiments25citations
  • 2009Strength of GRP-Laminates with Multiple Fragment Damagescitations
  • 2009Damage Tolerance of Naval Sandwich Panels12citations
  • 2009Notch and Strain Rate Sensitivity of Non-Crimp Fabric Composites20citations
  • 2009Tension, compression and shear fatigue of a closed cell polymer foam93citations
  • 2008Cost optimization of composite aircraft structures including variable laminate qualities51citations
  • 2008The Compressive and Shear Responde of Corrugated Hierarchical and Foam Filled Sandwich Structurescitations
  • 2007NOTCH AND STRAIN RATE SENSITIVITY OF NON CRIMP FABRIC COMPOSITEScitations
  • 2006Fatigue of closed cell foams41citations
  • 2005Damage tolerance assessment of composite sandwich panels with localised damage94citations
  • 2005Compression-after-impact strength of sandwich panels with core crushing damage79citations
  • 2005Fatigue of closed cell foams2citations

Places of action

Chart of shared publication
Moreau, Florence
2 / 4 shared
Pimenta, Soraia
2 / 13 shared
Kullgren, Erik
2 / 2 shared
Asp, Leif E.
3 / 13 shared
Katsivalis, Ioannis
2 / 14 shared
Norrby, Monica
2 / 2 shared
Persson, Mattias
1 / 1 shared
Johansen, Marcus
1 / 3 shared
Harnden, Ross
2 / 2 shared
Lindbergh, Goran
1 / 1 shared
Lindbergh, Göran
10 / 18 shared
Yucel, Yasemin Duygu Duygu
1 / 1 shared
Xu, Johanna
2 / 4 shared
Johansson, Mats
2 / 25 shared
Bismarck, Alexander
1 / 142 shared
Johannisson, Wilhelm
3 / 4 shared
Maples, Henry A.
1 / 4 shared
Alvim, Kayne S. P.
1 / 1 shared
Hagberg, Johan
2 / 4 shared
Stievano, Lorenzo
1 / 56 shared
Liu, Fang
1 / 20 shared
Asp, Leif
1 / 8 shared
Boulaoued, Athmane
1 / 7 shared
Jeschke, Steffen
1 / 1 shared
Rashidi, Masoud
1 / 6 shared
Wallenstein, Joachim
1 / 1 shared
Johansson, Patrik
1 / 12 shared
Fredi, Giulia
1 / 17 shared
Ihrner, Niklas
2 / 3 shared
Sieland, Fabian
1 / 1 shared
Kazemahvazi, Sohrab
7 / 8 shared
Deshpande, V. S.
2 / 18 shared
Schneider, Christof
3 / 4 shared
Russell, B. P.
1 / 1 shared
Åkermo, Malin
5 / 9 shared
Mårtensson, Per
2 / 4 shared
Leijonmarck, Simon
2 / 4 shared
Jacques, Eric
4 / 5 shared
Hellqvist Kjell, Maria
1 / 1 shared
Kazemahvazi, S.
1 / 3 shared
Behm, Mårten
4 / 5 shared
Kjell, Maria
3 / 3 shared
Kjell, Maria H.
1 / 1 shared
Willgert, Markus
1 / 2 shared
Burman, Magnus
7 / 10 shared
Eric, Jacques
1 / 1 shared
Espinosa, Horacio D.
1 / 5 shared
Wei, Xiaoding
1 / 1 shared
Grégoire, David
1 / 27 shared
Latourte, Félix
1 / 14 shared
Kaufmann, Markus
3 / 6 shared
Zimmermann, Kristian
1 / 1 shared
Siemetzki, M.
1 / 1 shared
Rosén, Anders
1 / 1 shared
Kolsters, Hans
1 / 1 shared
Kiele, Joern
1 / 1 shared
Mattei, Christophe
1 / 1 shared
Shipsha, Andrey
4 / 4 shared
Bull, Peter
1 / 1 shared
Hayman, Brian
1 / 11 shared
Chart of publication period
2024
2022
2020
2019
2018
2017
2016
2015
2013
2012
2011
2010
2009
2008
2007
2006
2005

Co-Authors (by relevance)

  • Moreau, Florence
  • Pimenta, Soraia
  • Kullgren, Erik
  • Asp, Leif E.
  • Katsivalis, Ioannis
  • Norrby, Monica
  • Persson, Mattias
  • Johansen, Marcus
  • Harnden, Ross
  • Lindbergh, Goran
  • Lindbergh, Göran
  • Yucel, Yasemin Duygu Duygu
  • Xu, Johanna
  • Johansson, Mats
  • Bismarck, Alexander
  • Johannisson, Wilhelm
  • Maples, Henry A.
  • Alvim, Kayne S. P.
  • Hagberg, Johan
  • Stievano, Lorenzo
  • Liu, Fang
  • Asp, Leif
  • Boulaoued, Athmane
  • Jeschke, Steffen
  • Rashidi, Masoud
  • Wallenstein, Joachim
  • Johansson, Patrik
  • Fredi, Giulia
  • Ihrner, Niklas
  • Sieland, Fabian
  • Kazemahvazi, Sohrab
  • Deshpande, V. S.
  • Schneider, Christof
  • Russell, B. P.
  • Åkermo, Malin
  • Mårtensson, Per
  • Leijonmarck, Simon
  • Jacques, Eric
  • Hellqvist Kjell, Maria
  • Kazemahvazi, S.
  • Behm, Mårten
  • Kjell, Maria
  • Kjell, Maria H.
  • Willgert, Markus
  • Burman, Magnus
  • Eric, Jacques
  • Espinosa, Horacio D.
  • Wei, Xiaoding
  • Grégoire, David
  • Latourte, Félix
  • Kaufmann, Markus
  • Zimmermann, Kristian
  • Siemetzki, M.
  • Rosén, Anders
  • Kolsters, Hans
  • Kiele, Joern
  • Mattei, Christophe
  • Shipsha, Andrey
  • Bull, Peter
  • Hayman, Brian
OrganizationsLocationPeople

article

Multifunctional Carbon Fiber Composites: A Structural, Energy Harvesting, Strain-Sensing Material

  • Zenkert, Dan
  • Harnden, Ross
  • Lindbergh, Goran
Abstract

Multifunctional structural materials are capable of reducing system level mass and increasing efficiency in load-carrying structures. Materials that are capable of harvesting energy from the surrounding environment are advantageous for autonomous electrically powered systems. However, most energy harvesting materials are non-structural and add parasitic mass, reducing structural efficiency. Here, we show a structural energy harvesting composite material consisting of two carbon fiber (CF) layers embedded in a structural battery electrolyte (SBE) with a longitudinal modulus of 100 GPa─almost on par with commercial CF pre-pregs. Energy is harvested through mechanical deformations using the piezo-electrochemical transducer (PECT) effect in lithiated CFs. The PECT effect creates a voltage difference between the two CF layers, driving a current when deformed. A specific power output of 18 nW/g is achieved. The PECT effect in the lithiated CFs is observed in tension and compression and can be used for strain sensing, enabling structural health monitoring with low added mass. The same material has previously been shown capable of shape morphing. The two additional functionalities presented here result in a material capable of four functions, further demonstrating the diverse possibilities for CF/SBE composites in multifunctional applications in the future.

Topics
  • impedance spectroscopy
  • Carbon
  • composite