Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garemark, Jonas

  • Google
  • 6
  • 24
  • 202

ETH Zurich

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Iron‐Catalyzed Laser‐Induced Graphitization – Multiscale Analysis of the Structural Evolution and Underlying Mechanism2citations
  • 2024Iron-catalyzed laser-induced graphitization – Multiscale analysis of the structural evolution and underlying mechanism2citations
  • 2023Strong, Shape-Memory Lignocellulosic Aerogel via Wood Cell Wall Nanoscale Reassembly68citations
  • 2023Strong, Shape-Memory Lignocellulosic Aerogel via Wood Cell Wall Nanoscale Reassembly68citations
  • 2022Integrated Cellulosic Wood Aerogel Structurescitations
  • 2022Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation62citations

Places of action

Chart of shared publication
Burgert, Ingo
2 / 38 shared
Tinello, Susanna
2 / 2 shared
Ritter, Maximilian
2 / 2 shared
Stucki, Sandro
2 / 3 shared
Parrilli, Annapaola
2 / 16 shared
Kürsteiner, Ronny
2 / 2 shared
Panzarasa, Guido
2 / 3 shared
Yan, Wenqing
2 / 4 shared
Dreimol, Christopher
1 / 2 shared
Edberg, Jesper
1 / 10 shared
Dreimol, Christopher H.
1 / 2 shared
Sapouna, Ioanna
2 / 2 shared
Chen, Bin
2 / 17 shared
Kilpeläinen, Ilkka
3 / 6 shared
Felhofer, Martin
2 / 3 shared
Perea-Buceta, Jesus Enrique
3 / 3 shared
Ruiz, Maria F. Cortes
1 / 1 shared
Gierlinger, Notburga
2 / 8 shared
Li, Yuanyuan
3 / 10 shared
Berglund, Lars A.
3 / 28 shared
Cortes Ruiz, Maria F.
1 / 1 shared
Berke, Barbara
1 / 2 shared
Rico Del Cerro, Daniel
1 / 1 shared
Hall, Stephen
1 / 19 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Burgert, Ingo
  • Tinello, Susanna
  • Ritter, Maximilian
  • Stucki, Sandro
  • Parrilli, Annapaola
  • Kürsteiner, Ronny
  • Panzarasa, Guido
  • Yan, Wenqing
  • Dreimol, Christopher
  • Edberg, Jesper
  • Dreimol, Christopher H.
  • Sapouna, Ioanna
  • Chen, Bin
  • Kilpeläinen, Ilkka
  • Felhofer, Martin
  • Perea-Buceta, Jesus Enrique
  • Ruiz, Maria F. Cortes
  • Gierlinger, Notburga
  • Li, Yuanyuan
  • Berglund, Lars A.
  • Cortes Ruiz, Maria F.
  • Berke, Barbara
  • Rico Del Cerro, Daniel
  • Hall, Stephen
OrganizationsLocationPeople

article

Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation

  • Berke, Barbara
  • Kilpeläinen, Ilkka
  • Rico Del Cerro, Daniel
  • Perea-Buceta, Jesus Enrique
  • Garemark, Jonas
  • Hall, Stephen
  • Li, Yuanyuan
  • Berglund, Lars A.
Abstract

Eco-friendly materials with superior thermal insulation and mechanical properties are desirable for improved energy- and space-efficiency in buildings. Cellulose aerogels with structural anisotropy could fulfill these requirements, but complex processing and high energy demand are challenges for scaling up. Here we propose a scalable, nonadditive, top-down fabrication of strong anisotropic aerogels directly from wood with excellent, near isotropic thermal insulation functions. The aerogel was obtained through cell wall dissolution and controlled precipitation in lumen, using an ionic liquid (IL) mixture comprising DMSO and a guanidinium phosphorus-based IL [MTBD][MMP]. The wood aerogel shows a unique structure with lumen filled with nanofibrils network. In situ formation of a cellulosic nanofibril network in the lumen results in specific surface areas up to 280 m2/g and high yield strengths >1.2 MPa. The highly mesoporous structure (average pore diameter ∼20 nm) of freeze-dried wood aerogels leads to low thermal conductivities in both the radial (0.037 W/mK) and axial (0.057 W/mK) directions, showing great potential as scalable thermal insulators. This synthesis route is energy efficient with high nanostructural controllability. The unique nanostructure and rare combination of strength and thermal properties set the material apart from comparable bottom-up aerogels. This nonadditive synthesis approach is believed to contribute significantly toward large-scale design and structure control of biobased aerogels. ; QC 20221019

Topics
  • impedance spectroscopy
  • pore
  • surface
  • strength
  • anisotropic
  • precipitation
  • yield strength
  • isotropic
  • wood
  • cellulose
  • Phosphorus